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ABSTRACT 

A description of the far fields radiated by an electromagnetic 

point source in the presence of bounded,  lossless,  anisotropic media 

is formulated in terms of ray optics.    The ray-optical description is 

a generalization of classical geometrical optics and has previously been 

used to describe the fields radiated in Isotropie media and those radiated 

by line sources in anisotropic media.    In formulating the ray-optical 

description,  the fields radiated by a point source in the presence of 

a planar interface between two homogeneous,   lossless media of 

arbitrary anisotropy are first represented in terms of a double Fourier 

integral.    This rigorous integral representation is then evaluated 

asymptotically to find the first-order stationary point, branch curve 

and surface wave pole contributions. 

Using the equality of group velocity and velocity of energy 

transport tor plane waves in anisotropic media,   the stationary point 

contributions are interpreted in terms of direct and scattered (transmitted 

and reflected) rays and the associated fields are cast into ray-optical 

form.    Locally,   the direct and scattered ray fields are those of plane 

waves carrying energy in the ray direction and are scattered at the 

interface according to Snell's law.    The ray-optical forms of these ray 

fields exhibit their dependence on properties local to the ray path,   thus 

permitting the extension of the ray-optical results to problems not 

amenable to rigorous analysis.    Such an extension is considered for the 

case of scattering at a gently curved interface between two homogeneous 

anisotropic media.    The branch curve contributions are interpreted in 

terms of lateral rays whose fields also are locally those of plane waves 

carrying energy in the ray direction. 

In order to interpret the surface wave pole contributions in ray- 

optical terms,  it is shown that the group velocity of a modal surface wave 

in a plane-stratified,  lossless, anisotropic medium is equal to the velocity 

of energy transport of the surface wave as a whole.    Using this relation, 

the surface wave pole contributions are interpreted in terms of surface 

wave rays whose fields are locally those of modal surface waves carrying 

energy in the ray direction.    Two examples of the effect of anisotropy on 

surface wave propagation are considered. 
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INTRODUCTION 

In recent years considerable attention has been given to the prob- 

lem of evaluating the fields radiated by localized,  time-harmonic,  electro- 

magnetic sources in the presence of bounded anisotropic media.    Interest 

in this topic has been stimulated by the growing importance of communica- 

tion links,   such as earth-satellite links,   involving propagation through the 

earth's ionosphere.    Previous studies in this area have been limited to in- 
(1.  2) finite media     '        and,     when boundaries arc present,   to the fields radiated 

by an infinite line source   '    '    '    or to radiation from a point source when 

the configuration possesses rotational symmetry about the optic axis of the 
-^ (7.8) medium. 

The purpose of the analysis given here is to describe the far fields 

radiated by a point source in the presence of lossless,   bounded anisotropic 

media when no simplifying symmetries are present.    In carrying out this 

study,   a description of the point source fields was sought in terms of ra- 

optics.    The ray-optical description is a generalization of classical geo- 

metrical optics and has been applied successfully to diffraction problems 

in isotropic media    *     '       and to line source problems in anisotropic 
(4,5,6,12) 

media. 

The procedure employed in this study to develop a ray-optical de- 

scription of the point source radiation is to first solve a problem that is 

amenable to rigorous analysis and that embodies the features found in a 

larger class of problems that are of interest.     The formal solution to this 

canonical problem is then approximated asymptotically for observation 

points far from the source and the various contributions to the approxima- 

tion are then interpreted in ray-optical terms.     In the ray-optical inter- 

pretation,   one looks for ray paths that can be viewed as trajectories of 

energy flow.    The fields associated with the rays are then cast into a form 

displaying their dependence on properties local to the ray path.    Having 

obtained a ray interpretation dependent on properties local to the ray path 

in the canonical problem,   the effect of varying the local properties can be 



determined.     Thus,   problems not amenable to rigorous analysis can be 

solved by considering the propagation of individual r^ys,   whosi' bi-havior 

is determined from the canonical problem. 

The canonical problem considered here consists of a time-harmonic, 

electromagnetic point source radiating in the presence of a planar inter- 

face between two homogeneous,  lossless,   anisotropic,  du-lt-ctric  half-spacns. 

No restriction is placed on the anisotropic media filling the half-spaces, 

except that it be lossless,  e. g. ,  the optic axes of the modia may be oriented 

arbitrarily with respect to each other and with respect to the interface. 

A rigorous double Fourier integral representation for the fit-Ids radiated 

by the point source is derived in Chapter I in terms of the plane wave or 

modal fields of the individual media.     The stationary point,   branch curve 

and real pole contributions to the asymptotic evaluation of the double Fourier 

integral representation and their ray-optical interpretations are given in 

subsequent chapters. 

The method used in performing the first-order asymptotic evalua- 

tion of the double Fourier integrals is to first apply the steepest descent 

technique to the integration over one of the transform variables.     The result 

of the first integration, which contains saddle point,  branch point and sur- 

face wave pole contributions,   is then integrated over the remaining transtorm 

variable,  to first order,  by the method of stationary phase.    The advantage 

of this method for performing the asymptotic evaluation lies in the fact that 

it yields the first-order branch curve and real pole contributions,  as well 

as the stationary point contributions.    Furthermore,  the first-order contri- 

butions are sufficient for the description of the direct,   reflected and trans- 

mitted ray fields and the lateral ray and surface wave ray fields.    While 

more sophisticated techniques exist that give all orders of the stationary 

point contributions,  they do not give the branch curve and real pole contribu- 

tions. 

In Chapter II,  the stationary point contributions to the double Fourier 

integrals are found to first order for observation points in the far field and 

interpreted ia terms of direct,   reflected and transmitted rays.     The loi al 

behavior of these rays suggests a method whereby the rays reflected from 



and transmitted through a curved interface can be found from ray-optical 

calculations.    This method is discussed in Chapter II.    The branch curve 

contributions to the double Fourier integrals are also found to first order 

in Chapter II and interpreted in terms of lateral rays.     The  ray-optical 

formalism given here is consistent with Keller's diffraction theory for iso- 

tropic media. 

In order to interpret the real pole contributions to the double Fourier 

integrals,   it was found necessary to derive the  relation between group ve- 

locity and the velocity of energy transport for propagating modal surfare 

waves in plane-stratified,   anisotropic,  lossless media.    Chapter III is de- 

voted to a proof of the equality of group velocity and the velocity of energy 

transport for modal surface waves in an arbitrarily plane-stratified loss- 

less medium.     The group velocity of a surface wave is the gradient,   in the 

transverse wave number plane,   of the solution of the surface wave dispersion 

relation for the angular frequency as a function of transverse wave numbers. 

Since the group velocity vector is independent of the coordinate of stratifica- 

tion,   it cannot always be parallel to the real part of the local Poynting vec- 

tor of the surface wave,  which can vary with this coordinate.    However, 

the group velocity vector is shown to be equal to the real part of the total 

Poynting vector,  which is the integral over the coordinate of stratification 

of the local Poynting vector,  divided by the corresponding integral of the 

local energy density,   i.e.,   the surface wave energy velocity.    It is also 

demonstrated in Chapter III that the energy flow and stored energy in a 

plane-stratified,   lossless configuration that can be represented by an anti- 

Hermitian dyadic surface impedance are simply expressed in terms of the 

derivatives of the impedance with respect to the transverse wave numbers 

and frequency.     The significance of the impedance  relations for surface 

waves is also discussed. 

As an illustration of the surface wave group velocity-energy ve- 

locity relation derived in Chapter III,   this relation is verified in Chapter IV 

by direct calculation for a specific configuration.     The configuration studied 

consists of a uniaxially anisotropic plasma slab in free space.     The plasma 

anisotropy is assumed to be produced by an infinite static magnetic field 



parallel to the slab.    This configuration exemplifies the marked direction- 

al dependence of surface waves that is possible in anisotropic media. 

The first-order asymptotic evaluation of the surface wave pole con- 

tributions to the far fields excited by the point source is given in Chapter V. 

Using the relation between surface wave group velocity and energy velocity 

derived in Chapter III,   the pole contributions are interpreted in terms of 

surface wave rays, which are the two-dimensional trajectories of energy 

flow.    In orier to illustrate the effects of anisotropy on the radiation due 

to a point source in the presence of a planar interface,  the results of 

Chapter II and the first section of Chapter V are used to compute the fields 

radiated in a gyrotropic plasma above a perfectly conducting plane.     The 

static magnetic field is taken parallel to the interface and the R. F.   fields 

are excited by an electric field impressed in a slot cut in the conductor. 

For one set of plasma parameters,  the direct ray and surface wave radia- 

tion patterns are calculated and clearly exhibit the effects of the anisotropy. 

. 



Chapter I 

FORMAL SOLUTION FOR THE FIELDS RAPIATED BY A POINT 

SOURCE IN THE PRESENCE OF A PLANAR INTERFACE 

A.     INTRODUCTION 

In this chapter,   the form of the double Fourier integral representa- 

tion will be established for the fields radiated by a time-harmonic electro- 

magnetic point source in the presence of a planar interface between two 

arbitrary homogeneous,  lossless,   anisotropic,  dispersive dielectric hall- 

spaces.     The techniques of modal analysis will be used in developing the 

Fourier integral representation for the fields.    Using a notation similar to 

that of reference (1.3),  an orthogonalitv statement wil) be developed for the 

transverse modal fields of each medium that will prove helpful in deriving 

the excitation,   transmission and reflection coefficients appearing in the 

Fourier integral representation. 

Without loss of generality,  the interface between the two homoge- 

neous half-spaces is taken to be the z = 0 plane of a rectangular coordinate 

system and the point source is assumed to be located at (0, 0, z') with 

zi<  o see Fig.  1.    The effect of the medium filling the half-space z<  0 

on the propagation of time-harmonic electromagnetic waves is assumed to 

be described by the relative dielectric tensor   e    while the effect of the 

medium filling the half-space z "»  0 is assumed to be described by the re- 

lative dielectric e    .    For convenience,   both media are assumed to have 

permabilities equal to that of free space.    However,   an analysis of the more 

general case of media having tensor permability would yield the same basic 

results obtained in this chapter.     The relative dielectric tensors €    and I 
(14,15)     " 

must be Hermitian since the media are assumed to be lossless,       *        but 

are otherwise arbitrary,   e. g. ,   the optic ?xes may be oriented arbitrarily 

with respect to each other and with respect to the interface. 

—— 
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B.      THE FIELD TRANSFORMS 

The fields radiated by a localized source in the presence of a planar 

interface between two media arc the solutions of the inhomogeneous Maxwell 

equations satisfying the radiation condition at infinity and the continuity 

conditions at the interface.    For sources having harmonic time dependence 
it t 

e       ,  Maxwell's equations in in anisotropic dielectric are 

V  xE (£) = -jmi)     H(r) - M(_r) 

V xH (r) = jU) t:      e  •  E (r) + J(£) 

(1) 

ji) t 
where the factor e        has been omitted.    In (1),   C    andu     are the free space 

o o 
dielectric constant and permeability and €   = -:     for z <   0 while for z >   0, 

e   = e    .    Also,   M  and .1 are the magnetic and electric source current den- 

sities,   respectively.    Since x and y can vary over the infinite interval,   the 

electric and magnetic fields may be represented by a double Fourier trans- 

form as 

E(r)/        IT   l  ffe* z)  /   -Jk  (Sx+n y) 
}=    J  '     j1 )e      0 d?  d- 

H(r)|       -•    j ß^. z) 
(2) 

where k    - H) J €     u      ,r=xx+yy + zz and k   =x   ?+ynixiX    an^ 
o o     o     —    —o       ■'-o      —o —t     —o ■'-o o   "*-o 

z^    being unit vectors along x, y and z,   respectively.    Using the orthogonality 

and completeness of the exponentials on the infinite interval,   it is found that 

the field transforms satisfy 

(-jk   k   +z    -T") x «5 = -juu i.     ß -   HI 
o—t—odz        — o—       — 

(-jk   k  + z   ^- ) x ^   = to €     e   •  6+ U 
■'o-t-odz -      J        o~      -     - 

(3) 

where 

-(ht■z, r-v ft -J(i) j^—. {-: I—I ■      J I  e dx dy . 
(#) a- 

W(k , z)   I j M(r) 

(4) 



In order to solve the equations ir, (3),  they are first decomposed into 

their transverse and longitudinal narts by writing C   in dyadic form 

e=e+ezz+z-'    +e      z 
- t        z—o—o    —o—zt    — tz —o 

(5) 

where 

e=€       xx+e       xy + 
~ t        xx—o—o xy—o^o 

y   x   + 
yx -^-o —o 1   1 yy^o-^o 

e      = e       x    + e       y 
zt zx —o zy    o 

e      = e      x   + €      y 
—tz xz —o yz -^o 

■    (6) 

With the help of (6),  the longitudinal part of (3) can be written as 

-jk    k   x 5    = - j i ll     z    Jl    - z     W. 
o —t      — t o —o     z     —o      z 

-jk   k x J/    = JLt e     z   (e    •   Ä + e       & ) + z    7 (7) 
o—t    —t o —o —zt    -1        zz     z       —o    z 

and the transverse part of (3) canb«  written as 

— zx5-jkkxzö=-j^u     ß  -  VI 
dz —o    —t        o—t    —o    z o—t      —t 

— z   x ^   -jk   k x z  ß    = ji' c   (e  • Ä   + e   ^J ) +   f 
dz —o     —t o—t    —o   z      •       o ~t    —t    -tz   z        —t 

(8) 

Equations (7) and (8) mav be put into a compact form usine a no- 

tation similar to that of reference (13).    This notation is based on the 

use of matrices whose elements are operators --in this case,  two- 

dimensional dyadics and vectors and scalars -- and will prove convenient 

in developing an orthogonality statement for the modal fields.     The ortho- 

gonality statement will in turn simplify the calculation of excitation,  trans- 

mission and reflection coefficients and discussion of their properties. 

The matrices necessary for this notation are 



r  = 
z 

0 

Z     X 1   ^ 
—o      ~ t 

-z   x 1 
—o      ~ t 

(9) 

where 1     =xx+yyis the transverse unit dyadic, 
~ t     —o —o    "^o -^o 

W   = 
t 

us €    e 0 
o  ~ t 

0 uuii     1 
o ~ t 

W 
tz 

uu e    e 
o —tz 

k    z    x k 
o -o     —t 

-k    z    x k 
o —o     —t 

(10) 

(ID 

W    = 
zt 

e       -zt 
zz 

     z   x k 
ID e   e      —o    —t 

o   zz 
(12) 

     z    x k 
uu u       —o     —t 

- " 
1 0 

uu c    e 
o     zz 

w   - 
z 

0 
1 

uu it 
o 

i   ■ 
t 

"t 

Jt J 

7. 

(13) 

(14) 

and 

M 

r«zl 
(15) 

With the above definitions,   (7) and (8) can be rewritten as 



-1 r 
dz -JV V^tz

Yz (16) 

and 

¥     = - W 
z zt 

Y    + iW     * 
z     z 

(17) 

As indicated in (16),   the dyadic elements of "     and W   are to be 

dotted into the appropriate vector elements of I    while the vector elements 

of W      are to be multiplied by the scalar elements of 't    .    In (17),   the 
tz z 

vector elements of W  ^ are to be dotted with the appropriate elements of 
zt 

I    and the product W    ♦     is formed by ordinary matrix multiplication. 

Substituting f     from (17) into (16) it is found that I    satisfies the vector 

differential equation 

dz       z        t     J t t 
(18) 

where 

W = W   - "W      W 
t tz      zt (19) 

and the equivalent transverse source transform I   is given by 

«   = *     - W     W    • 
t t tz      z     z 

(20) 

The elements of the product matrix W     W      in (19) are dyadics,   i.e. 
tz     zt 

W    W     = 
tz    zt 

uu e 

zz 
e      €      + a)€   (z   x k )(z   x k )     €    (z x k ) 
-tz-zt o^-o     -t/v-o     -t' I       -tzv-o    -t' 

7^" 0-   x k ) e 
e o    —t  — zt 

zz 

o_ 

zz 

7— to.x ii*)(z x K) t —o        t      o    ^ 
zz 

(21) 

Observe that W is a function of z in that •   = ei   ^OT z <   0 while for 

z > 0,   e = e _ . 
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C.      THE MODAL FIELDS 

When the equivalent transverse   source   transform I    has z depen- 

dence 6 (z - z'),  the solution of (18) satisfying the continuity condition at 

z = 0 {&   and Jl ,  and hence I   ,  are continuous across the interface) and the 

radiation condition at |  z |    = ^   is the one-dimensional Green's function of 

the transform problem.    The radiation condition requires that the Green's 

function be bounded as  I  z|    ■• •   and that the z component of the Poynting 

vector, which is given by Re((5   x ß-   ),  he such that energy is carried 

away from the source for |  z | - ^ .    The radiation condition must be im- 

posed in order to uniquely determine the one-dimensional Green's function. 

Furthermore,   it ensures that the actual fields satisfy the radiation condi- 

tion in that the total power passing through any constant z plane,  which is 

r r      * ko2 r r       * 
given by Re I  I   E x H   dxdy = Re(T—)     I J   Äx ß^   d? dn ,  will be away — t    —t err ~t      — t 
from the source for | z | - 00 see Arbel^   for further discussion. 

The Green's function can be constructed from the homogeneous 

solutions of (18) for each medium considered separately,  i. e. ,   from the 

solutions of 

^-r    » 1    +JWY    =0 (22) 
dz     z       t     J t 

where W is made independent of z by using tHe dielectric tensor appropriate 

to the medium under study for all z. Equation (22) represents four coupled , 

first-order, ordinary linear differential equations with constant coefficients 

whose unknowns are the four transform components &  ,   & ,  U   and ß   . r x     y     x y 
Such a system of equations has solutions whose z dependence is of the form 

-ik w z 
e      0     .    Substituting this z dependence into (22) gives 

'Kr   -  -L w] • Y  = 
.    k   —     t   • <23) 

o 

which is an eigenvalue problem equivalent to the simultaneous diagonaliza- 

tion of two 4x4 matrices. 

■ 
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For (23) to have non-trivial solutions,   the determinant of the 

matrix representation of the operation IK T    - ■—  W I must be zero, 
I      z      k0       J 

This condition determines the eigenvalues or propagation constants v 

for each medium,which when substituted into (23) allow the determination 

of the corresponding eigen or mode vectors f   (v   ).    Since the matrix re- 
f I       1       *   n 

presentation of the operator IK T   - r-  W I   is fourth order,   the eigenvalues 
0 

are the roots of a quartic so that, in general,   four eigenvalues and 

eigenvectors satisfy (23).     The coefficients of the quartic depend on '   and 1 

so that the vanishing of the determinant yields the plane wave di-spi-rsion 

relation 

D (f. ft , « ) • 0 (24) 
P 

For lossless media I   is Hermitian and hence W is Hermitian for real *   and 

•l ,   as can readily be verified.     Thus,   since F    is  real and symmetric,   for 
z 

lossless media and resl f  and f\ ,  the coefficients of the quartic will be 

real,   indicating that the «   's are real or occur in complex conjugate pairs. 

When the four eigenvalues of (23) are distinct,   the four eigenvectors 

of (4,3) are linearly independent,  and hence complete,   in the four-dimensional 

space formed by the union of the two-dimensional <5     and Jl   spaces.     This 

follows from the fact that T     is non-singular so that (23) is equivalent to 

the eigenvalue problem— V       • W • V    = w Y   ,   which is known to have linearly 
0     Z (16) 

independent eigenvectors when the eigenvalues are distinct. 

In order to find excitation,  transmission and reflection coefficients, 

it is first necessary to establish the orthogonality properties of the eigen- 

vectors.    To this end,   let „      and v       be any two eigenvalues of (23) and 
n m 

let I     be the 2x1 matrix,   with vector elements,   that is the transpose con- 

jugate of the 1x2 matrix ¥   .     Consider now the quantity 

t     m n  z     k t     n 
o 

(v  r 
m    z    k ̂

w).,t(.m)J.,t,.n), 
(") 

w hich is zero since *       and x     are eigenvalues of (23).    Since T     is real 
m 

and symmetric  and W is Hermitian,   one can write,   for example, 
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rw-ft*im,]+' T^«,•TtO•w•^c,l., (26) 

so that (25) reduces to 

n      mLtm z       tnj 
= 0     . (27) 

If the eigenvalues of (23) are distinct (27) implies that 

*+(«   ) • r  • v (v  ) = M 6 t 
t " m        z       t     n n    H n1     m 

(28) 

where 

n '    m 

n        m 

*n~ «m 

(29) 

and M    is the normalizing constant 

II = ¥{*). r   ¥ („ ) 
n        tlKn ' z     tv* n' 

(30) 

Thus,  for distinct eigenvalues,   the eigenvectors of (23) are orthogonal 

with respect to the weight operator t     in the sense indicated in (28). 

If all the eigenvalues of (23) are distinct,  then none of the M  's 

are zero.    To verify this statement,   observe that the diagonal 4x4 matrix 

M    I whose diagonal elements are the M  's is given by 

[Mn]=[VKn)]   ^nlK^]      ' (31) 

¥   («    ) I has for its rows the conjugate of the 

eigenvectors of (23) corresponding to the eigenvalues ■     while the 4x4 

matrix Kv>] has the eigenvectors for its columns.    Also N IS 

the 4x«* matrix representation of F   .    If the eigenvalues of (23) are all 
z l\h) 

distinct,   the eigenvectors are linearly independent, and hence 
r <£   "> 1 r -I 

det   ¥   (H     )|  and det   (¥   (K    )) I  are non-zero.    Furthermore,   since 

det   F    [ is not zero,  det   M   1^0,   so that none of the M   's are zero. 

When the medium under consideration is anisotropic,   the eigen- 
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values of (23),   considered as function of the transverse wave numbers ( 

and n ,  will be distinct except on certain branch curves in the real (? , n ) 

plane.    On these curves,   two or more eigenvalues will be equal,   i.e.,   two 

or more solutions of the dispersion relation (24) will have branch-type sin- 

gularities,   and the corresponding M   's will be zero.    The effect of these 

singularities on the radiated fields will be considered in Chapter II. 

If the medium under consideration is isotropic,   i.e.,   the  relative 

dielectric tensor is e   = el    where 1    is the unit tensor,  the dispersion re- 

lation (24) reduces to 

D  £ ^ . n )= k4{e -S2-^ 2- H2) 2 = 0 
p o 

(32) 

and hence there are at most two d atinct eigenvalues of (23) given by 

± v^ -?   - n^   .    While the eigenvalues are degenerate in this case,   if 

e - F    - n    ^ 0,   four linearly independent eigenvectors of (23) can be con- 

structed satisfying an orthogonality condition similar to (28).    The E and 

H modes commonly used in the solution or  radiation problems are one 

possible selection.     By direct substitution it is easily shown that the E and 

H modes satisfy (28) with 6 
'n' x 

*   defined 
m 

6V *   = 
n     m 

0,    K     i * or one mode is E and the 
n m iU tLT other H 

1 ,   H     = M   *     and both are E or H modes 
n        m 

.(33) 

Throughout this discussion,  the case of isotropic media is included if it 

is assumed that the eigenvectors have been selected so as to satisfy an 

orthogonality condition similar to that described above.    Finally,   if 
2       2 

€ - 5   - ^     =0,   all four eigenvalues arc zero and the eigenvectors are no 

longer linearly independent. 

Physically,   the orthogonality statement (28) can be interpreted as 

a power orthogonality condition for the z component of the modal power. 

By direct expansion,   (28) can be rewritten M ■•(Ax Jf       +5       *■ M   ) - 
' r —o    -tr.    — tm     —tm     —tn 

M    6 * ,  where (5      and M     are the electric and magnetic field com- 
n     * n' * —tn _tn 

ponents of the eigen or mode vector Y   (*    ) and (5       and ß       are those of 
tn-tm-tm 
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Y  (K     ).    Thus it is seen that the modal fields for each mode having real 
t    m 

propagation constant H     carry energy in the z direction independently of 
n « 

all other modes.     For such modes M     ■ 2Re(z     •   (5      x ^     ) is twice the n —o      —tn      —tn 
z component of the real modal power.    In the case when M     is complex or 

imaginary,  it is seen that the corresponding modal fields cannot by them- 

selves carry energy in tho z direction.    However,  if both the modal fields 

having complex or imaginary wave number N     and the modal fields having 

wave number H    are present,  the combined fields can carry energy in the 
n 

z direction. 
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D.      EVALUATION OF THE ONE-DIMENSIONAL GREEN'S FUNCTION 

! 

Assuminp the eigenvalues and eigen or mode vectors for both the 

t    and e     media to be known,   the one-dimensional Green's function,  which 

is the solution (18) satisfyinp the radiation condition and the continuity con- 

dition at z-0,   can be constructed.    Corresponding to a point source located 

at (0, 0, z1),   the electric and magnetic  current densities J and M are of 

the form 

:    ' I    I 
(x)      (y) I   (z    z') (34) 

M(.) M 

where J and M are the vector source strengths. Fiom (4), (12), (13), 

(14) and (20), the form of J and M given in (34) is seen to imply that the 

equivalent transverse source transform :   (k , z) can be written as 

:
f(k . z) ■  V   (k ) 6 (z-z1) t     t o    t 

(35) 

where 

k      2 
Mk )   = Or2 ) ov~t 2^ ' 

2t 
M 
-ot 

- W     W 
tz      z 

oz 

M 
oz 

(36) 

Since the source term in (18) is localized to z =  z',   for z ^ z1 the «ne- 

dimensional Green's fmction will be a snoerposition of appropriate modes. 

For a lossless medium and any real B    and n  ,   if the dispersion 

jelation (24) has complex solutions,   they occur as conjugate pairs.     Thus 

(24) has zero,   two or four  real solutions for any particular real S   and r\ . 

At this point it is necessary to assume that half of the  real solutions of (24) 

for either medium correspond to modes carrying energy in the positive z 

direction and the remaining real solutions correspond to modes carrying 

energy in the negative / dirfcHor        With this assumption,   of the four modes 

In Chapter II,  where the asymptotic evaluation of the Fourier integral 
representation is carried out.   it will aiso be assumed that the four solu- 
tions    n of the dispersion relation (24),  which are functions of ?   and 1 
can be defined such that for each n,   v n{s , r, ) is a continuous function of 

and        that corresponds either to an upgoing mode for all I   and »1   or to 
a downgoing mode for all -    and H , 
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in each medium,  two modes carry energy or decay in the positive z direc- 

tion -- upgoing modes -- and two modes carry energy or decay in the nega- 

tive z direction -- downgoing modes.     If this were not the case,   some prob- 

lems with impedance boundary conditions would not have solutions that satis- 

fied the radiation condition     In the e    medium,  the upgoing modes are 
-    -. ~ *-   *- 

labeled with n - 1 ,   2   and the downgoing modes with n = 1 , 2 .    In the   e , 
-.    .. ♦-   ♦- 

medium,  the n = 3, 4   modes are upgoing and the n = 3, 4  modes are down- 

going      This labeling scheme is indicated in Fig.  1 where the arrows indicate 

the direction of energy flow or decay. 

4M 

-p-1 

3.* 

3.« 

Fig. 1-1     Interface between two homogeneous,  anisotropic media 

In view of the foregoing assumption on the energy flow of the modes, 

for z' < 0,  i.e. ,  for the source below the z = 0 plane    the radiation corc".- 

tion implies that in the region z > 0,  the Green's function will be a super- 

position to the n = 3,  4  modes of the e 2   medium,  while in the region z < z', 

it will be a superposition of the n = l , 2   modes of the e     medium.    For 

z' < z < 0,  the Green's function will be a superposition of all four modes of 

the e    medium.    Thus,  the one-dimensional Green's function Y (z) can be 

written as 
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•Jk K    i 
I      b    TJ«   )•     0   m 
*. m    t     m 

3, 4 

(z > 0) 

_ -jk   x    z      r -jk   y     z 
V w   ,      v o   n / ,   .        . o  m 

(   > .. n    l     n ^   ..    m   t    m 
' tK   '~   \  \ , 2 \ ,t 

_ -jk   v    z      „ 
/      a    r   (v    ) c /      c 

1, 2 

*   (*     )e 
m    t     m 

- j k   H    z 
o   m 

1 , 2 

(«'< z < 0) 

(z< z') 

(37) 

where the amplitudes a   ,   b      and c     are to be found from the continuity condi- 
p       m m 

tions at z = 0 and the jump conditions at the source.    In (37) I   (z) for z*-   z' 

has been written for convenience in terms of two sums,   the first of which can 

be interpreted as a direct field contribution and the  second as reflected con- 

tribution,  as will be seen presently. 

When the source term in (18) is of the form given in (35),   Y   (z)  can 

have no stronger discontinuity that a step at z = zl.     Thus integrating (18) from 

z'- "    to z' + *   ,  where j    is a small positive quantity,   gives 

r TTJ«»* (! )- r.d'. ')] = -*    . 
z   L   t t J o 

(38) 

Substituting for *'   (z' + A  ) and V   (z' - | ) the forms given in (37) and taking 

the limit as 4   -  0,   (38) becomes 

r 
-jk   v     z' 

o 
an¥t(Ho,C        0    "       *   I       •.*>.>• L        ntn J- ^     n    t     n 

r, 2 1,2 

-jk   *     z1 

on 
(39) 

Dotting both sides of (39) by Y   (v    )   and using the orthogonality relation (28), 

the amplitudes are found to be 

f    +     -        "1    Jko,< n2' / 
a    =-c       ¥(*')•*        e iU (40) 

n nltnoJ 'n 

where 
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1 ;     n = 1   ,   2 

1;      n = \  .   2 
(41) 

The coefficients b      and c      can be found in terms of the a   's from 
mm n 

the continuity of f   (z) at z = 0,   i. e. ,   the continuity of the transverse fields 

across the interface.    Since f   (z) is continuous at z = 0,   it is seen from (37) 

that 

b    V   (K     ) =  7    a    t   (v    ) +7    c     ¥   (v      ) 
ft        m   t    in'      L       n    t     n     ,£._    m    t     m 

3,4 f, 2 1,2 

(42) 

which is equivalent to four equations in four unknowns.    In order to solve (42) 

for the b    's,  dot both sides of (42) with V („ ~ ) .  T      and then with !   (K-.*).r 
m t     ^ z ^     2 : 

to obtain the set of equations 

•rMr =Mr3 b3 +Mr4 b4 

a2   M2   =M2 3    b3    +M2  4b4 

(43) 

where 

M      = v+(y *) . r  • IJH    )    • nm        t     n z       t    m 
(44) 

In (44),   *     is an eigenvalue of the e  , medium while v       is an eicenvalue of 
n ■ ~1 ^m B 

the €     medium.    The solution of (43) for the b    's is 
~ c m 

m 
Za      ,       m = 3 ,  4 

mn    n 
n=r, 2 

(45) 

whe re 

r*-   = Mr   M- - /d ;   r» 5   =-M-  Mr 2 /d    I 
31 124 J   2 214 

41 123 42 <:13 

(46) 

with 
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d-llrS    MU   -M^   M?S (47) 

In order to solve (42) for the c     's,   dot both sides   of (42) with 

1 . (H T   ) •  ^    and then with 't    (H t   ) •  ^    to obtain the equations 
111 t      2 z 

ci Mr =Mr3 b3 +Mr4b? 

C2    Mi   =M2   3   b3    +M2   4   b4 

(48) 

where M        is as defined in (44).    Using (45) for the b    's,   c, and c.  can be 
nm ml 2 

written as 

here 

m 
/ a     ,    m = 1 ,   2 
L mn    n 

n=l, 2 

r^   =(MnM-?   .Mr4    Mj||i^/l^d 

rjj   -(M^-M^   •    -M-.   Mr4OMi/Mr 

rir    =(MH   lljj       l^j   MH)Mr/M^d 

r2 2    =(M2 4   ^S       M2 3    Mf4,M2/M24 

(49) 

(50) 

All of the coefficients in the one-dimensional Green's function (37) 

have thus been determined in terms of the propagation constants v      and the 

mode vectors  I   (*    ) of the two media and the equivalent transverse  source 
"       t     n 

transform   i    .     The terms in (37) whose a nplitudes are the a   's may be 
o n 

interpreted as representing modes excited directly by the source.     Those 

terms in (37) whose amplitudes are the b     's and c    's can be interpreted in r mm r 
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terms of modes excited at the interface by the incident n = l , 2   modes. 

The interpretation of the terms in (37) whose amplitudes are the a   's 

follows from the fact that expression (40) for a    depends only on the propa- 

gation constants and mode vectors of the medium in which the source is 

located,   i.e.,   it is not influenced by the presence of the interface.     In addi- 

tion,   the corresponding modes are such that they carry energy or decay 

away from the source.     The interpretation of the terms in (37) having the 

b    's and c    's as amplitudes is based on (45) and (49),  which state that b 
mm m 

and c     depend linearly on the incident mode amplitudes ar*   and a^   and on 
m      r ' r 1 2 

the coefficients t        that describe the plane wave scattering (reflection and 
mn 

transmission) properties of the planar interface.    Moreover,   in this case 

the corresponding modes are such that they carry energy or decay away from 

the interface. 

The z component I   (z)   of the field transforms can be found from 
z 

(17),  which for zk ■' gives 

I   (z) « - W z.- V" (51) 

Since W      can be taken inside the summation signs of (37),   I   (z) will be 
zt z 

given by (37) with I   («    ) replaced by 

z     n zt       t     n 
(52) 

which represents the z components of the modal fields.    Finally,  defining 

Y (z) » Y  (z) + z    ¥   (z) 
t —o     z 

Y (H   ) ■   Y  („   ) t z    Y   (H   ) 
n t    n      —o     z    n 

(53) 

it is seen that the complete Fourier transform Y(z) of the fields radiated by 

the point source is given by (37) with t AM    ) replaced by Y (H   ).    Note that 
t     n n 

the electric and magnetic field vectors   5    and M-    in Y (j,    ) are those of the 
— n — n n 

plane wave propagating as exp [-jk  (y x + ^ y + *■   z)j   in the appropriate medium. 
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For convenience in later chapters,   let 

r     +      *       *    -i 
A  •-•   If   C    ) - i       / M 

n n L n o J n 
(54) 

JkoH nz, 

so that a     in (40) becomes a    = A    e (in Appendix A,   a useful form n n n v rr 

for A    is derived for the case of real K    ).    Substituting  I (z) as  given in (37) 
n n 

with Y   (*    ) replaced by ¥ (*    ),   into (2) and using (40),   (45),   (49) and (54), 

the actual fields  radiated by the point source can be written as 

Ed) 

H(r) 
i   i  a 

x ,     & 

— m 
-jk      fx+ny + v      z-v    z'j J   oL m n    J   j»  j i        A   e d5  dr 

mn    n 
m=3 , 4     n=l , 2 

m 
(55) 

in the  region z >  0,  while in the region z1 < z < 0, 

it) 
. I    /J 

<5nJ -jk   J?x+ny+K    (z-z')"j 
A   e 

n 
d?   dn 

Hit] |      n=l,2 M — n 

m=l , 2      n=r, 2   - ■ 

-111    | -jk|?X+Tly+v Z-M      Z'l 
T       A    e d?  dn 

M mn    n 

(56) 

w here   ö    and  ^/    are the electric and magnetic field polarization vectors in 

I (H   ),   i. e. ,   they are the vector amplitudes of the plane wave fields propagating 
-jk   (?x t1! y + v    z) 

as e .In the region z<   z' 

£(£) 

H(r) 
I a — n 

A   e 
n 

-jk   r?x+T1y+)<n(z - ■•)! 
d»  dn 

n=l ,2     -00      Iß ' —n 

+ 4-   L // 
m=r,2     n=l,2     -» 

^,n,r    A • 
,.      §    mn    n 

— m 

jk  f^x + n Y + v^z - H    z' 1 
m n if dn  . 

(57) 

—— 
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In writing (5^),   (56) and (57) the order of integration and summation has 

been interchanged to facilitate the asymptotic evaluation of the fields.    Al- 

so,  while the integrations are indicated as being over the real (? , n) plane 

in (55),   (56) and (57),   the actual surfaces of integration must be suitable 

deformed into complex (? , n ) space about the singularities of the various 

integrands,  as will be discussed presently. 

The first sums in (56) and (   7) represent the primary or direct fields 

radiated by the source into the £   medium while the double sums in (55), 

(56) and (7) represent the secondary or scattered fields generated by the 

direct field incident on the interface. The asymptotic evaluation and ray- 

optical interpretation of the various integral contributions in (55),   (56) and 

(57) are considered in subsequent chapters. 

——^— 
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Chapter II 

EVALUATION AND INTERPRETATION OF THE DIRECT,   SCATTERED 

AND IATERAL RAY CONTRIBUTIONS TO THE FAR FIELDS 

A.      INTRODUCTION 

In Chapter la rigorous Fourier integral representation was found 

for the fields  radiated by a time-harmonic point source in tin; presence of 

a planar interface between two homogeneous,   lossless,   anisotropu   media. 

The asymptotic evaluation of this integral representation for observation 

points  in the far-field  region is considered in this chapter.     The results of 

the asymptotic evaluation are cast into a coordinate invariant,   ray-optical 

form containing such physically significant quantities as  ray directions,   ray 

lengths,   ray phases,  divergence coefficients and plane wave scattering 

coefficients.     This ray-optical form exhibits explicitly the local   nature of 

wave propagation.    It is precisely this local behavior that permits a gc n- 

eralization of the ray-optical theory to gently curved geometries,  which may 

not be amenable to a rigorous treatment.     The ray-optical formalism deve- 

loped here for anisotropic media is consistent with Keller's theory of 
(9) 

diffraction in isotropic media. 

The asymptotic evaluation of the double Fourier integral repn t-onta- 

tion is carried out by first integrating over one of the transform variables 

using the steepest descent technique (see Appendix  B).     The  result of the 

steepest descent evaluation is then integrated over the  second transform 

variable by the method of stationary phase (see Section B and the first part 

of Section E).    In Section C,   the stationary point contributions to the asymp- 

totic evaluation are interpreted in terms of direct,   reflected and transmitted 

rays.     Some properties of the scattered ray fields that are associated with 

caustics are considered in Appendix C.     The lateral ray interpretation of 

the branch curve contributions is given in Section E and Appendix E. 

An extension of the  ray-optical results obtained for the planar inter- 

face problem is postulated whereby the fields reflected from and transmitted 

through an arbitrary gently curved interface between two arbitrary homo- 
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geneous,   anisotropic,   lossless media can be found.    The details of this ex- 

tension are presented in Section D and are found to require a suitable modi- 

fication of the  ray divergence coefficient,  which is carried out in Appendix D. 

The ray interpretation of the surface wave contribution to the far 

fields is not considered in this chapter since it requires a knowledge of the 

relation between the group velocity of surface waves and their energy flow. 

This relation is derived in Chapter III and the ray interpretation of the sur- 

face wave contribution is given in Chapter V. 
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B.     ASYMPTOTIC EVALUATION OF THE GENERIC INTEGRALS 

As discussed in Chapter I,   the fields   .adiated by the point source in 

Fig.   1-1 contain a component E, radiated directly by the source into the  e 

medium and a scattered component Er  generated by the direct field incident 

on the interface.       From (1-56) and (1-57),   the direct component F    is seen — d 
to be 

h 
n 

n  ■ 
1,2     for    z'   ;   z <   0 

f. 2     for    z '    z1 
(1) 

where 
00 -jk  j fx+'ny+H    (z-z1)' 

L"jJ   Arf.T»)!.«,^ )e  "   OL ' J d?dn     . ~n     J J      n — n 

(2) 

th 
<5   (? , ^ ) being the polarization vector of the n      plane wave and A   ( ? , -n ) its — n n 
excitation coefficient.     The scattered component E    is seen from (1-55), 

(1-56) and (1-57) to be 

r 
fr • y 2.^" -■ n ~' ■" ■m 

—mn 
n m 

3,4     for   z >   0 

1,2     for   z <   0 
(3) 

where 

.,1 oo -jk   I   ?X+riy+«      z-x     ■'   | 
I =11  6     (f.tOr        (5,^ )A   (?,r,)e   "    OL m "     Jd?d^ 
—mn    J J   —m mn n 

(4) 

and the scattering coefficients l        (? , ^ ) are found from the continuity condi- 6 mn ' 
tions at the interface.    Recall from Chapter I that the n=l, 2   plane waves of 

the £. medium are upgoing (they carry energy or decay in the positive z 

direction) while the n = l, 2   plane waves are downgoing (they carry eneigy 

or decay in the negative z direction).    In the G     medium the n = 3 , 4   plane 

For simplicity,   only the expressions for the electric field are given here. 
The exp  essions for the magnetic field differ from those for the electric 
field only in that the plane-wave magnetic field polarization vector Jl    re- 
places  (5   •        .——■__ 



Zu 

waves an- upgoing ad the n= 3, 4   plane waves are downgoinp,   as is de- 

picted In Figt  I-1. 

The  integrals defined in both (Z) and (4) are of the generic form 

OB 

and will be evaluated for large values of k  .     The asymptotic evaluation of 

(5) is predicated on the existence of a large parameter in the exponent,   which 

we have taken to be k    for convenience.    However,   a more detailed investiga- 
o 

tion of the exponents appearing in (2) and (4) will show that the distance from 

the source to the observation point can also be factored out of P(t , r ),   thus 

permitting the  removal of the restriction on k   ,   substituting instead the re- 

quirement that the observation point be many free-space wave lengths from 

the source.     This comment applies throughout. 

1.     Comments on the Method of Integration 

The method employed in performing the asymptotic evaluation of 

the integrals appearing in (5) is to first apply the steepest descent technique 

to the II    integration with (   an arbitrary real parameter.     This  r.-sult,  which 

includes the saddle point,   brach point and pole contributions,   is then integrated 

over I    to first order by the method of stationary phase.     This method ol 

evaluating the double Fourier integrals has been chosen since it yields both 

the branch curve contributions (lateral rays) and the real pole contributions 

(surface wave rays) in addition to the first-orde   ,   real stationary point con- 

tributions (direct and scattered  rays). 

The stationary points are those values of |   and Ti   at which the first 

derivatives of the phase with respect to ?   and1"!    are zeio and it is from the 

neighborhood of the stationary points that the principal contributions to (2) 

and (4) arise.     The complete asymptotic series representing the stationary 

point contributions for the double integrals has been found by several authors 
_.   ,    (17,18,19)    ^T       .(20)       . , . „..     (21        . --  see Chako ,   Nagel and Jones and Kline        ,   who survey pre- 

vious work.     The terms in the asymptotic series go as integral powers of 

1/k   .   i.e.,   the first term goes as 1/k   ,   the second as 1/k   ,   etc.    At those 
o ^ o u 
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stationary points for which the phase function is real,  the evaluation of 

the double integrals used in this paper gives the first term of the asymptotic 

series.    This term results from the saddle point contribution to the inte- 

gration and is the only term of importance in formulating the ray-optical 

representation for the stationary point contribution to the far fields of 

the source 

However rigorously other methods are able to describe the stationary 

point contributions to the double integrals of (2) and (4).  they do not as yet 

seem to have been developed sufficiently to give the branch curve contribu- 

tions or the pole contributions.       The branch curves are the loci of points 

in the (' , ^ ) plane at which two or more of the four solutions of (1-24) for 

N    of the I , medium are equal,  or at which two or more solutions of (1-24) 

for N     of the C ., medium are equal.    Branch curve contributions,   which 
n _ 2 

occur only in the scattered field integrals (4),   arise from the branch point 

contributions to the steepest descent integration over f\    and will be shown in 
2 

Section E to be 0(l/k   ).    Although the second term ir the asymptotic series 

for the stationary point contribution,  which is also 0(l/k   ),   will be neglected, 

the branch curve contribution is retained since in shadow regions,   where all 

orders of the stationary point contributions are exponentially small,  the 

branch curve contribution,   when present,   is of algebraic order and thus will 

give the dominant contribution to the far fields.    The method used here to 

evaluate the branch curve contributions was previously employed in a 
(5) 

different context by Rosenbaum       for double integrals of a somewhat simpler 

generic form. 

For completeness,  a brief discussion of the steepest descent integra- 

tion over 1  ,  which has been discussed by several authors,   is given in 

Appendix B. 

2.    Evaluation of the Stationary Point Contribution 

The first-order saddle point contribution to the T| integration of (5) 

The poles give rise to residues in the 1\ integral,  which are then integrated 
over S by the method of stationary phase.     This contribution can be inter- 
preted in terms of surface wave rays using the energy transport properties 
of surface waves in plane-stratified,  anisotropic,   lossless media,   which are 

derived in Chapter III. 
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is given by (B-^) of Appt-ncHx B,   which is valid when the saddle points are 

isolated Irom one another and from the branch points of Ff^.n ) and P('," ). 

Since P  (',T1) "8   P(T,^ )/J ^ is a function of '   and"1 ,   solving the saddle 

point condition P«(S ,^ ) = 0 or ^    gives the possibly multivalutd function 

s        s 

If t\   (=') is  indeed a multivalued function with branch points at which P(r, '    ) 
s s 

is real,   then two or more saddle points will coalesce as  ' approaches the 

branch point of T'   {T) and P     (!r,T'   ) will approach zero.     Near the branch 

point of r   (r),   (B-3) is invalid so that the branch point of 1   (') would seem 

to be a  singular point for the stationary point result.     This  is,   however,   not 

generally the case,   since this  singularity is usually introduced only by the 

choice of the (x, y) coordinates and its location depends on the choice of the 

coordinates.   Accordingly,   it will be seen that the stationary point result for 

the point source is not necessarily singular at points for which P      = 0. 

While the saddle points may be isolated from the branch points of 

F(? , r) and P(r,rl )   for most values of ',   as  r varies a saddle point and 

branch point may approach each other and coalesce at some value of *.    How 

ever,   as long as the stationary phase points in the  r integration are not near 

the values of T at which a saddle point and a branch point coalesce in the com 

plex " plane,   the stationary phase evaluation will be valid since the principal 

contribution to the integral of the terms of (B-3) over r comes from neighbor 

hoods of the stationary phase points.     The actual singularities of the station- 

ary point contributions to the point source fields will be discussed later. 

The stationary phase points for the integration of each term of (B-3) 

over '  are those values of 5 for which P(r,ri   ) is real and 

-^pr.ri ) = pr,n ) + p?(
r.n ) —ri n-o        m 

a s f s Z sd.s 

(the subscripts 1 and 2 refer to partial differentation with respect to S and rl). 

Note that sgnP22('.rs) in (B-3) is constant except for a jump of ^ 2 occurr- 
ing at the branch points of 1^(5),  where P22^' ,ns) = 0. 
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Hut Py{
T,r   ) - 0 is the saddle point condition in the"   integration so that, 

in view of the sum in (B-3),  a contribution to the double in.^gral comes from 

each stationary point (?  »t)   ),   defined by the condition 
a S 

p1(
r.^)= Pzr.") ■ o (8) 

for v.hich P{T   , *!   ) is real.    Note that the above analysis does not apply when 
s      s 

d^l 
the  solution of (8) for e     is such that— 

s d' 
(see after  (10)) 

since this would imply that in the fl   integration two saddle points are close to- 

gether or that a branch point of P(r,,n ) is near the saddle point.     Performing 
(22) 

the stationary phase integration of the terms in (B-3) over ' and summing 

over all stationary points gives the stationary point contribution 1^    to the in- 
s 

tegral in (5) as 

is-f     I 
S. P. 

-jkoP(? ,r\) TT d2p 

F(?.r1)e -J-(sgnP      +sgn -)| 
-e     4 Z2 d'2 

f\   P22l   |  d2p/d^| 
S        8 

(9) 

2 2 
where (.   , n    ) is the stationary point and d   P/d~     is the total second deriva- 

s      s 
tive of P[    5,T|   (^)] .    Using (7) and (8),   the total second derivative of 

s 
P(', ri   ) is seen to be 

s 

2_ dn dii      2 
d       = p    + 2 P     —^ + P     i-J-i 
.„I 11 12  d: 22 'd» 

(10) 

Furthermore,   since PJ ",^    (?)] ■   0 for all ? ,  dn   Id' --  -  P..IP., at 
C S S id        cc. 

n = n   {") so that (10) can be written 
s 

C^ = -^-(P    P      -  P2) 
-?2        P22    (P1I    22        12 ' (ID 

Substituting (11) into the denominator of (9) gives 
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Jk    P(?  ,* ) 

2^ 
F(? , - )>• 

o 
•Jl 1 

s 

c 

71 pu p.. 
> 

- ) s 

/ e  " (12) 

0 S. P. 

where t   is deliru-d by 

2 P P  - P 
d P       _       , 11 22  12 

= spn P   f spn  — = sen P  + sgn{ ) .  (13) 
d? 22 

In Appendix C it is shown that E    can hi- written as 

S = sun P      + sen P (14) 
uu vv 

where P      and P      are the second partial derivatives of P in the (u,  v) 
uu uv 

coordinate system,   which is  rotated from the (?,t) ) coordinate system anci 

for which the mixed  tecOBd partial P      ■ 0.     This expression for 6   will 
uv 

prove useful later on. 

The stationary point result given in (12) is  valH whenever 
2 

P    P      - P     -/^ 0 and ,   as previously mentioned,   is the first term in the 

complete asymptotic  series for the contribution from isolated stationary 

points.    Observe that if P   -, = 0,   in which case (B-3) is not valid,   the 
2 2 

quantity P  ,P?7 - P,?   need not be zero.     The Hessian P  .P,, " P« •   Will be 

zero when the observation point lies on a caustic surface or on a shadow 

boundary of the point source.    For such observation points a different asym- 

totic expansion than that leading to (12) is  lequired for the evaluation of (5). 
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RAY INTERPRETATION FOR THE STATIONARY POINT CONTRIBUTIONS 

The  ray interpretations of the stationary point contributions to the 

integrals defined in (2) and those defined in (4) will be considered separately. 

The ultimate poal will be to obtain a coordinate-independent representation 

for the stationary point contributions in terms of physically significant ray- 

optical quantities. 

Many aspects of the ray interpretation of the stationary point contri- 

butions,   as well as the branch curve contributions,  will be explained in terms 

of the plane wave dispersion surfaces of the c     and £     media.    For this 

reason a brief discussion is given below of several important properties of 

the dispersion surfaces that are pertinent to the present discussion.     The 

plane wave dispersion surface of either medium is the locus of points in 

real (T, r", H  ) space that satisfy (1-24).     The shape and orientation of the 

dispersion surface for each medium is determined by the parameters and 

optic axes of the medium and does not depend on the choice of the (x, y, z) 

coordinate system.     The most important property of these surfaces for the 

ray interpretation of the far fields in lossless media is that the real part of 

the complex Poynting vector of a plane wave having wave vector k =x    ' + 

v   Ti + z    v    is parallel to the unit normal V  to the dispersion surface at the 
(15,23) 

point (' ,   'r,  K) on the surface.       ' In all that follows,   the unit normal 

V will be assumed to have the same sense as the  real part    of the complex 

Poynting vector of the corresponding plane wave. 

The n      branch of the dispersion surface will be defined as the set of 

points  L e ,r] ,K   (", n)]   where K    (?«1 ) is a continuous,   single-valued solu- 
n n 

tion of (1-24) and ' and n   are such that K    (f.r)   ) is  real.    A branch of the 
n 

dispersion surface may be of infinite extent,   i.e.,   *    (^,11   ) real foe all ? 

and n .    However,   if *    (*,*]) is not real for all real ?   and n ,   the n      branch 
n 

of the dispersion surface will have a boundary curve or rim.     The projection 

of this rim into the {*,r\   ) plane is a poartion of the branch curve since 

K   (?, n ) changes from real to complex as the projected curve is crossed, 
n 
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which can happen only il two or more real solutions of the quartic (1-24) 

are equal on the projected curve.    Furthermore,   it the dispersion surfaces 

are smooth,   i. e, ,   the unit normal to the surface  is a continuous function of 

position on the surface,   the normal to the surface at points on the  rim v. ill be 

parallel to the {', n ) plane.       It is assumed that the  '- , and I  . media are 

such that the dispersion surfaces are smooth.     Uniaxial crystals and pyro- 
(24) 

tropic,   cold,   electron plasmas,   except at plasma or hybrid  resonances, 

are examples of such media. 

1.    Direct Rays 

For the  integrals defined in (2),   P(','r|   ) =   'x +ri   y + K    (z - z') and the 
n 

stationary point condition (8) becomes 

^H ^K If, 2    for   | - z'>  OJ 
x » (z-z') —j-  ■ y + (z-z')——   -On 

I »I 

In order to interpret (1?) in ray-optical terms observe that the unit normal 
f V» 

V    to the n      branch of the dispersion surface may be expressed as 

v 
— n 

-.  -.  .//^yt(^y = Mx0— *!„— -1,)//  —     M—     +   1      (H.) 

where the minus sign is to be used for n - 1 , 2 ,   since v     has been assumed 

to be in the direction of energy flow of the corresponding plane wave and for 

these values c; n,   the plane waves carry power in the positive z direction. 

For similar  reasons,   the plus sign must be used for n-1, 2 .     In subsequent 

sections where the normal to the dispersion surface1 of the G      medium will 

be needed,   (1 6) can be used with the minus sign for n = i , 4   and the plus sign 

f o r n = 3 ,  4 . 

Defining L = xx + yy + z   (z- z'),   which is the displacement of the 
—     —o        ^-o       —o r 

observation point from the source,   it is seen that (1 5) is equivalent to the 

By direct expansion of (1-30) for v n real it can be shown that Mn = 2Re(£ • 
(JJ x jl ) so that Mn - 0 on the rim of the n"1 branch of the dispersion sur- 
face,   i.e. ,  when the eigenvalues of (1-23) are degenerate. 
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statement that LxV    - 0 and L •   V  >   0,   i.e.,   that V    be in the direction of 
-    —n -n —n 

L.    In view of the sum in (12),   the stationary point condition (15) for the 

direct field integrals defined in (2) implies that a contribution to I     comes 
th _n 

from every point on the n      branch   of the dispersion surface at which V     is 
— n 

parallel to and has the same sense as L.     Hence,   taking into account the sum 

indicated in (1),  a stationary point contribution to the direct fields at a point 

in the e     medium arises from every point on the entire dispersion surface of 

the e    medium at which V is in the same direction as the displacement vector 

L.    In other words,  while the source radiates a continuum of rays correspond- 

ing to all points on the dispersion surface of the e    medium,   only those rays 

in the direction L contribute to the fields at the observation point. 

For the direct field integrals (2),   F(? , f\] evaluated at the stationary 

point is the vector amplitude A     (5    of the plane wave carrying energy in the 
n — n 

direction of L.    Since the wave vector of this plane wave isk    =x   §   +v'n + 
— —n     —o -"-o 

z   H    ,   for the integrals defined in (2),   P(§    , ^   ) = LN    where L =   |   Ll    and 
■—o     n s       s n — 

N    = V    .   k 
n     —n     —n 

(17) 

is the ray-refractive index of the n*" branch of the dispersion surface. 

The quantity P. . P      "  ^i ->    ^n (^4) can '3e Put into ray-optical terms 

if it is recognized that the Gaussian curvature G    of the n     branch of the 

.. ■ , L (25) " dispersion surface can be written 

'A. 
n n 

i P2      >      2 

 i 4o cos    Ö (18) 

where 9     is the angle betwen V    and z   .     Because of the form of P(? ,11 ) 
n 0 —n —o 

in the integral.') given in (2),   using (18) it is seen that 

P. .P., -  P. .2 =  L2 G   /cos2e 
11    22 1 2 n n 

(19) 

Finally,   in Appendix C it is shown that B   defined in (1 3) can be written in 

terms of the principal curvatures K  , and Kn2 of the n      branch of the 
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dispersion surface as 

6 ■ sen K , + sen K , 
n 1       n2 

(20) 

Equation (20) was derived assuming the principal curvatures to be posituc  il 

the associated centers of curvature lie on the same  side of the dispersion sur 

face as V    and negative otherwise. 
-n ■ 

Using (19) and (20) in (12) as well as the form for P(?    , »1    ) and 

F(~    , 1\   ) described above,   the stationary point contributions to the direct 
—     s       s 
fields (1) arc given by 

^d 
£1   T  J 

0    n    S.P. 

A    Ä   I  eO«6    |       -jk   LN       -j-(sgnK   ,+ sgnK   J 
n —n n o       n 4 n 1 n2 

I G s       s 

(21) 

which is the total far-field ray contribution to the direct fields (no branch 

point or pole contributions occur in the 11    integration in (2),   as is discussed 

in Appendix B).     In (21),   0«l ,   2   forz'<   z<   0 while forz<   z1,   n = l,2. 

As previously explained,  the double sum in (2 1) is equivalent to summing over 

the contributions from every point on the total dispersion surface of the € 

medium at which V is in the same direction as L . 

The term |cos 0    1    in (2 1) does not describe a fundamental property 
n 

of the ray fields since from (A-7) it is seen that 

A   I  cos 
n — n 

ej "-feihcir•L+^J.Mj/2i»«(Ä.«iC)i .(22) 

which is independent of the choice of the (x, y, z) coordinate system.     That 

A   (cos 6    |   ,   and hence (2 1),   are independent of the choice of the (x,  y, z) 
n n 

coordinate system reflects the fact that expressions (1) and (2) for the direct 

field are the same as those representing the fields radiated by a point source 
(2) 

in an infinite €    medium,   which can be evaluated in any (x, y, z) system. 

Moreover,  while the derivation leading to (2 1) is not valid for cos 6    ~ 0 
n 

(the stationary points are near branch curves),  the ray fields of (21) are 

still valid since for another choice of the z axis,   the stationary points would 

not be near the corresponding branch curves.    The asymptotic expression for 
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E. given in (21) is not valid for observation points near a shidow boundary, 

in which case G   ^  0 at a stationary point, 
n 7 r 

Examining the ray fields in (2 1),   they arc seen to be determined by 

the following factors: a) the polarization vector &     of the plane wave   carry- 

ing energy in the direction of L ;   b) the invariant excitation coefficient 

2"    i | r  n 

— A   I  cos B    I    of this plane wave,   which together with exp I -j— (sgn K   .  i 
o      n n 

sgn K     ) I gives the ray field excitation;    c) the phase change exp(-jk   LN   ) 

of the plane wave along the ray;   d) the angular ray divergence coefficient 

L\ IG       .    The quantity 1/L   I G   I    is the relative ray flux density at a 

distance L along the ray. 

2.   Reflected and Transmitted Rays 

Starting with the formal asymptotic stationary point result given in 

(12),   this result will be interpreted for the scattered   (leflected and trans- 

mitted) fields.    As a first step,  the ray interpretation of the stationary 

point condition will be considered.    Subsequently,   the significance of the 

various quantities appearing in (12) and their ray-optical interpretation will 

be considered. 

In the integrals defined in (4),   the phase function is P(? , 'H ) - 

§x+Tly + )t      z-H    z' so that the stationary point condition (8)   is 7 m n ' r 

^K ^K ^K 

X   + 
m 

I ? -  z »f y + z 
m 

ATI 

3,4     for   z>   0 
0:n=l,2;   m={_ 

r, 2     for   z<   0 

(23) 

with the assumption that V  has the same sense as energy flow,   (23) can be 

interpreted as  requiring |      and l|     to be such that a ray leaves the source 
s s 

along the direction V  {?    , ^   ) and upon incidence on the interface at 6 -n      s       s r 

(x1, y', 0) is reflected or transmitted from this point along the direction 
v     {?    i1"!   ) to the observation point (x, y, z) --  see Fig.   1.    Defining 
— m     s      s 
L   =x   x+y   y-z   z' and L     = x   (x - x') + y  (y - y') + z   z and using (16), 
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it is easily shown that (23) is equivalent to the conditions V    \ L   = V    x L        0 
-n      — n   —m    —ni 

for the  same -      and 1\     with V    .  I_    and V      •  L     positi\i'.     Thus (23) im- 
s s —n     —n — m     —ni 

plies that for lossless media,   the  ray path,   whose segments an-  L    and L    , 

is the trajectory of energy flow of locally plane waves that, are  scatU-ied at 

the interface according to Snell's law. 

For the  integrals under discussion,   F('     , ri    ) -   ^      F        A     is tlu h -     s       s        -m    mn    n 
vector amplitud.1 cf the  scattered plane wave carrying energy in the dneetion 

of L    .    Also,   since P(-  ,TI ) can be written in the form P(?  , rl ) =  f   xM 
"m 

r]   y'    .    K       Z1    +   ?    (X   - X')   +   Tl   (y   .   y')   +   H Z.     {t   is    Seen   that    P( ^ -      )   Z   L      N       ' n '      ' m '     s       s n    n 
L     N      where L    =       L       ,   L      =      L and N    and N      are the  ray-tel i ,n ti\ e 
mm n —n m        — m n m 

indices defined in (17) of the n      and mt'1 branches of the dispetsion lurfacei 

evaluated at the stationary point. 

A  ray-optical form for the Hessian P     P       -  P        can be found with 

the help of the  relation z -  L     cos 9      ,   where cos 9       ■ V     •  z   ,   and ex- r mm rn     —m    —o 
pression (18) for the Gaussian curvature'G      of the m      branch of the- dis- 

m 
persion suiface.    Using these and for G      ^0, 

P      P      -  P 
11     22 12 

m 
cos 

m 
m 

L      z1 

m 

3, 
cos - 
 m 

G 
m 

■ 2 i H 
m 

2 A I 
L 

-2 .2 ^2 
n  n 9  n      oft 
 n in n 

*r 2 
? f 

.2H 
^2 
P    K 

- 2 
m 

h%9i\   hi hi\ 
4  z 

2 
cos 9 

2 m 
-»2ft 8    K 

m      ,     »C hl\ 
4 r Ami ci ? ^TI 

(24) 

The coefficients of z'2 and L    z1  in (24) can easily be put into invariant form; 
m ' r 

however,   such an expression for the coefficient of L.-n^.'  is  complicated.     The 

expression inside the brackets of (24) is quad i atic  in L      and thus  if the  roots 
m 

of the quadratic are designated by L    , and L    .,,   (24) can be written as 
ml m2 

G 
P     P 

11    22 
m 

12 
cos   B 

(L      -L     ^(L     -L    J 
m ml       m        m2 

(25) 

m 

The  roots L and L    , are invariant under a  rotation of the (? , I"! ) co- 
rn 1 m2 . 

ordinate  system since the Hessian P. .P,, -  P, ,   is,   thus permittinc the  ray 7 11   22 12 r h 

optical interpretation of (24),   which will be piven presently. 
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TRANSMITTED RAY 

— REFLECTED RAY 

U.y.i) 

(a)   Ray structure for the scattered fields 

Kn BRANCH OF^ MEDIUM 

*mBRANCH 0Fj.o MEDIUM 

K_ BRANCH OF g.   MEDIUM m 

(b)   Determination of scattered ray directions from the dispersion surfaces 
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Usinc tht- form tor F(^    , ^    ) and P(?    , t\    ) distu.ssi'd above anci 
—     s       s s       s 

■riting (    ol  (14) as 
mn 

,   it is sft'n with the help of (25) and (12) that the 

stationary point contribution to Ep   of (3) can be written as 

(Er ) r 's. P. 
2'T 

k 
o 

I  I 
m, n S. P. 

n 
mn 

(5      r        A   | cosr 
~ m    mn     n m  

^TG~T   /|L    -L      TIL    - L     J 
m ni      ml Rl      mZ 

■ jk   (L   N   'L    N    ) 
o     n    n      mm 

(? r ) 
S        I 

(26) 

where n- 1 , 2    and for observation points  in the I     medium m     3,4   while 

for observation points in the t. medium m-1  ,2 .     The tust sum in (2t>) is 

taken over all possible stationary points for particular values of m and n,   and 

together with the second sum indicates that contributions come trom all 

possible scattered   rays   reaching the obse rvation point. 

The characteristic features of the scattered  ray fields are contained 

contained in the denominator of (2()) and 6 ,   which will be considered to- 
rn n 

gether with their  ray-optical interpretation in  relation to the caustics of the 
•-    — -.    -« 

scattered  ray fields.    Along the reflected (m = 1 , 2 ) or transmitted (m = 3 ,-'  ) 

portion of a ray,   L      is positive and measures the distance along the  ray from 

the interface.     Thus,   to:  each term L,     , and  L    ^ in (2(>) that is positive  real, 
m 1 m2 

there v ill be an observation point along the  ray at which P    P      -   P, ^ ,   and 

hence the denominator of (26),   are zero,   indicating that the scattered poition 

of the ray is tangent to the caustic at this observation point.       Similarly,   to 

each term L     , and L    _, that is negative  real,   there will be a point on the 
ml m? * p 

mathematical extension of the scattered portion of the ray to negative values 

of L     at which the extension is tangent to a virtual caustic.     Hence fo     L 
m s ml 

and L    ,  real,   (L      -   L       ) and (L      -   L     ,)  represent distances along the 
m2 m ml m nu: 

scattered ray to the observation point trom the  ray tangencies to  real or 

virtual caustics.     Howevr-r,   L      , and L    _ may be a complex coniucate pair. 
m 1 m2 / r J   f- r       » 

in which case the particular scattered  ray will never be tangent to a caustic, 

virtual or real.    A discussion of the possibility of predicting whether L        and 

L       are complex,   positive real or negative real from a simple inspection of 

« ' '  
The vanishing of Gni for a particular  ray indicates that the entire scattered 
portion of the ray lies in a caustic or shadow boundary or that the denomina- 
tor of (26) is linear in L,rri,   i.e.,   one of the roots of (24) is at infinity. 
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the dispersion surfaces is given in Appendix C. 

Consider now the phase term 6        in (26),   which is defined in (J4). mn 
Although (14) does not display the ray-optical character of 6       ,  a ray- 

optical expression for it does exist; however,   the ray-optical expression 

is not always simple and useful.    In order to verify this statement,   first 

consider the behavior of 6 as deduced from (14).    Since P      and P      are 
mn uu vv 

equal to the eigenvalues of the symmetric matrix whose elements are 

ä2/ä?2(H     z    H    z'),   bZ/hr[
Z{K     Z-K    Z

1
) and ö2/? ? ö r (H     Z-K    Z'), 

m n m n m n 
they will be continuous functions of L     = z/cos 9       along a scattered  ray. 

m m 
As  such,   P      and P      can change sign along a scattered ray only by going 

through zero,   in which  case P, ,P^, - P, ,= P      P       =0 and the ray is tan- 
11   22       12 uu    vv 

gent to a caustic    Consequently, 6       ,  which from (14) can only take on the mn 
values 0 or ± 2,  will be constant along the ray except for jumps across the 

ray tangencies to a caustic of value ± 2 if the tangency is simple,   i.e., 

L     . ^ L    _.    As L     ^   co ,   the term H    z' in P can be neglected as compared 
m 1        mc m n 

to H      z in calculating the signs of P      and P     .    Hence as L     -   00   the value 
m 0 ^ uu vv m 

of 5 becomes equal to that for a point source located at the origin in an 
mn 

infinite medium having H       as a branch of its dispersion surface,  and from 
^      m r 

(2 1) is seen to be 

6 =  sgn K        + sgn K    , 
mn        s       ml        6       m2 

(27) 

where K    , and K    - are the principal curvatures of the m     branch of the 
ml m2 

dispersion surface.    Since 6 changes only at the  ray vangencies to a r mn o / / o 

caustic,   6 is as given in (27) for all L     >   max. (L.     ,,   L    .,). mn 0 m ml       m?. 

As a result of the behavior of 6 described above,   one is led to ^on- mn 
lecture for L    , and L    -  real that 6 can be written as   scnK    ,(L     -  L     .1 4 
* ml m2 mn 0      ml     m        ml 
sgn K     JL      -  L    .) since this quantity is constant along a  ray except at the 

m Z    m        mZ , 
ray langencies to a caustic,  across which it jumps by ^-2,   and since it reduces 

to (27) for L.     >   max. (L     ,,   L    ,,).    The foregoing expression can readily  be x m ml       m2 o       o       r / 

identified as 6        when K     ,   and K    .. are of the same sign see the first mn m 1 m2 ■ 
four cases in Table C  1 of Appendix C.    However,   in order to use the above 

expression when K     , and K    _ are of opposite sign,   it is essential to have a r ml mZ 
rule for assigning the proper curvature to L^ni and Lm2.    Incorrect assignment 
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will yield a change in 6 across the  ray tangencies that if of opposite sign 

to the correct value.    In order correctly assign the principal curvatures in 

this case,   one should first find the change of 6 across the  ray tangencies 
rnn 

from (14) or from (C-20) of Appendix C.     Although the description of the change 

in 6 given in (C-20) is a purely ray-optical one,   (C-20) is not very con- 

venient to use since it requires a knowledge of the normal to the caustic sur- 

face at the  ray tangency in question.    For this reason,  when K     , and K    „, 7 6       '       M ml m2 

are of opposite  sign,   6 is most easily found directly from (14) or,   when 
mn ' • 

applicable,   from the fifth case in Table C-l. 

The description of fi given in the first five cases of Table C  1 is 
mn 

derived from (27) and the facts that 6       =0,  ±2; the change in 6 is ±2 
mn * mn 

for L     . ^ L    „; at L     =0,   i.e.,   on the interface,  and hence everywhere be- 
m 1 m2 m 

tween the interface and the first ray tangency to a caustic, 

6 = sgn K   ,  + sgn K  ,. (28) 
mn        e        nl 6       n2 

Relation (28) holds since at z = L      cos 9       =0,   P(? ,f| ) is identical with the 
m m 

phase function for the direct fields at z = 0.    In the last case of Table C-l, 

6 cannot be simply specified when L        and L       are positive real since it 
mn ml m2 

will depend on the magnitude of the curvatures and the orientation of the m 

and n     branches of the dispersion surfaces.    When L     , and L    , are complex 
ml m2 

or negative real in the last case of Table C-l,   6 =0 everywhere along the 6 mn ' ■ 
scattered ray.    If L     , ■ L    -.,   the point of tangency of the ray to the caustic 7 ml        m2 r •       ' 7 

is also a focus and B changes by 0 or ^4.    In effect,   the phase factor 

4     n^ n 
e gives the connection formula for the fields along the ray as the 

point of tangency is crossed. 

Aside from observation points on or near a caustic or shadow boundary, 

(26) ig not valid when a stationary point is near a brach curve of either H      or 
m 

H     (L      or L     is approximately parallel to the interface when this happens). 
n   —m —n rr '  r rr       ' 

Since the interface,   in general,   couples the plane waves corresponding to all 

branches of the dispersion surfaces of both media,  ^rnn will depend on all the 
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H 's.     Thus it is possible for a stationary point to be near a branch curve of 

the dispersion surfaces that appears in F but is not a branch curve of i r rK mn m 
or H   .    In this case,  which corresponds to the onset of lateral rays,   the 

n r 

stationary point result in (Z6) is a first approximation to the 1/k    term in the 
(26) 

correct asymptotic expansion. 

\ 
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D.    RAY-OPTICAL SOLUTION FOR THE FIELDS SCATTERED FROM A 
CURVED INTERFACE 

In the preceding section it was shown that for lossless media thi- 

stationary point contributions to the fields can be interpreted as the fields 

associated with rays of energy proceeding from the source to the interface 

and thence to the observation point.     Locally the  ray fields are plane wavrs 

since the stationary   point condition implies quadratic phase change (no 

linear change) between neighboring rays when the observation point moves in 

a plane perpendicular to the wave vector of the  ray.     The  ray scattering at 

the planar interface obeys Snell's law,  and the scattering coefficients are 

those found from a plane wave analysis. 

In this section the  ray-optical method for finding the scattered fields 

will be generalized to the case of a gently curved,   but otherwise arbitrary, 

interface.     This extension is suggested by the fact that only the local,   plant- 

wave properties of the fields incident on a planar boundary determine thr 

scattered rays so that   only the local properties of the curved interface would 

be expected to govern ray scattering at the curved interface.     The ray-optical 

method is essentially one of ray tracing with the scattering at the interface 

being determined by the locally plane wave properties of the ray fields.     This 

method permits one to calculate the scattered far fields for problems not 

amenable to a rigorous treatment.    Conceptually,   at least,   this method is 

easily extended to take into account multiple scattering of the rays. 

A point source is assumed to be located in a homogeneous,  lossless 

medium,   described by the dielectric tensor I    ,   that adjoins a second homo- 

geneous,   lossless medium,   described by £    ,   at some gently curved surface 

 see Fig.   2-a.    Based on the analysis for the planar inte rface problem, 

it is assumed that the source radiates direct ray fields into the e medium as 

if this medium were unbounded. Consider now one such ray originating from 

the source and corresponding to a point on the dispersion surface of the e 

medium defined by the wave vector k  .    If this ray is incident on the interface, 
—n 

its field E    at the interface will be one of the terms in (2 1) with L = L  ,  as 
—n —    —n 

shown in F ig.   2  a. 
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If the principal radii of curvature of the interface are large com- 

pared to wave length,   it is reasonable to expect that the ray scattering 

occurs in a similar manner to the scatteiing at a planar interface when 

this planar interface is taken to be the tangent plane to the curved inter- 

face at the point of incidence.     The scattered rays are shown in Fig.   2-a. 

Their directions are inferred from the dispersion surfaces of the two 

media and Snell's law,   k-n(k'n) = l<      -n(k     -n),   where n    is the 
—n  —o —n   —o       —m    —o —m   —o —o 

normal to the interface at the poin' of incidence and k      is the wave vector r ~m 
of a scattered ray.    Geometrically,   the scattered    ay direction can be de- 

termined by finding the intersection in k space of a line through the tip of 

k  ,  and parallel to n  ,  with the m      branch of the dispeision suiface,  as is 
—n r —o 
illustrated in Fig.   2-b for the ms4   scattered ray of Fig.   2-a.     The radius 

vector to the point of intersection is k     and the normal   V      at this point is r —m —m 
in the direction taken by the scattered ray.     Knowing k     and V    ,   the ray- 

' ' 6 -m -m 7 

refractive index N     = k     .V     and the corresponding plane wave polarization 
m   —m    "m 

vector 5      of the scattered    ay field can be found.    The ray scattering co- 

efficient " is taken to be that of ■ planar interface when the tangent plane 
mn 

is regardeo as the interface between the £ . and I      media. 

With the above results,  one can write the fields along the m 

scattered ray as the product of the following factors:   a) the amplitude of 

the incident ray at the interface,   which is the coefficient of ^     in (2 1); 

b)   the scattering coefficient f       ; c) the phase factor e mm aiong 

the scattered portion of the ray; d)   the reciprocal of the ray flux tube di- 

vergence coefficient D      ,  which will be discussed presently; e)   the addi- 0 mn 
tional phase change that occurs when the ray is tangent to a caustic surface, 

which will be combined with the incident rav phase factor sgnK       + sgnK 
n 1 n2 

and the combination written as 6        .    Consequently,  the scattered  ray field 
mn ' ' 

E     due to a point source in the presence of a gently curved inteiface is 

^      T        A    [cos?    |       -jk   (L   N   +L     N    )    -J7  6 
TT     ^ m    mn    n n onnmm 4     mn 

—       m k 
o L   v I G D 

n n mn 
(291 
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CURVED INTERFACE 

(a)     Ray scattering at a curved interface 

PORTION OF 
*m BRANCH 
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(b)     Construction for finding the direction of the scattered 

(m = 4)  ray 

Fig.  II-2 
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Calculation of the divergence factor D        is based on the principal 6 mn r r 

of power conservation in the scattered portion of a tube of rays,   i. e. , 

equality of the power passing any cross -section of the scattered portion of 

the  ray tube.     If da{L    ) is the area of the normal c ross-section of the 
m 

scattered portion of a narrow tube of rays at a distance L     alone the scat- 

tered  ray tube,   the power passing through this c ross-section is 

da{L    )Re{v     • [E    (L    ) x H* (L    ) " }.    Here E    (L    ) is gxven by (29) 
m L -m    I Tn    m        ^m       m    | J -m     m 

and 11    (L    ) is also given by (29) with   <5      replaced by the properly defined 
m —m 

magnetic field polarization vector ß-    .    At L     =0 the divergence coefficient 
— m m 

D        must be unity if,  as has been assumed,   the amplitude of the scattered 
mn 

field at the interface is to differ from that of the incident field only by the 

scattering coefficient I       .     Using this fact and requiring the power passing 

through any c ross-section of the scattered portion  or the  ray tube to be 

equal to the power passing through the c ross-section at L     =0,   one finds 

that 

0(E) ■ J da(L    )/da(o) 
mn    m       v m (30) 

The area ratio in (30) is determined by the shape of the m      and n      branches 

of the dispersion surfaces in the vicinity of the points k      and k    and from 
—m —n 

the curvature of the interface.    An expression for the area ratio is derived 

in Appendix D. 

In order to calculate the total field due to several ray contributions, 

it is essential to know the phase term   E in (29) along the individual rays. 
mn 0 ' 

At the interface 6 ■ fl     and it remains constant along the scattered portion mn n or 

of the ray except across the points of tangency of the  ray to a caustic,  where 

it changes by ± 2 if the tangency is simple.    Note that D       ,   as discussed in 

Appendix D,   is quadratic in L    .     Hence,   at most two such points of tangency 

exist for each ray.    In ^rder to evaluate this change in 5 it is assumed 
' 0 mn 

that the structure of a scattered ray pencil can be dete; mined solely from 

the phase distribution over a cross-section of the pencil and the H       branch 
m 

of the dispersion surface.    This assumption is consistent with the local 

nature of the  ray-optical fields and can be used to obtain a Fouiier 
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representation that asymptotically gives the fields of the scattered ray 

pencil,   including the change in 6 across a caustic.    The cross-section 
mn 

is taken to be the intersection of the pencil and a constant z plane lying 

between the interface,   at the points of incidence of the rays in the pencil, 

and the points of tangency of the rays in the pencil to a caustic.     This 

selection of the c ross - section is depicted in side view in Fig.   3 for a trans- 

mitted ray pencil.     The (x, y, z) coordinate system in Fig.   3 is taken such 

that x and y lie in the plane used in forming the cross-section. 

Performing a double Fourier transformation on the ray fields at the 

cross-section by assuming the ray fields outside this cross-section to bo 
-jk  ^ (?   T) ) 

zero results  in a transform of the form  (5      A      e      0 '       .    Here  (5 
— m     m — m 

and A     are slowly varying compared to k   ^  (? , fl ).    Using this transform, 

the ray fields of the pencil at z ^ 0 can be found from the first-order asymp- 

totic evaluation of the inverse double Fourier transform 

r/«, 
■jk   r§X+Tly + H        Z + M?,T1   )] 

A    e m d? dri   . (3 1) 
—m      ' ,1    — m   m 

The justification of expression (31) for E      is found in the fact that the 
—m 

asymptotic evaluation of the double integrals will yield the ray fields of the 

pencil with the original phase distribution in the z = 0 cross- section. 

From the representation of the ray fields given in (3 1),   the change in 

6 across the  ray tangency to a caustic can be calculated without an c tual 
mn 

knowledge of ^ (f,1! ) if the caustic itself is known.    In order to see this, 

recognize that the phase term in (3 1) is of the same form as that found for 

the scattered ray integrals (4) in the planar interface problem with -H    z' 
n 

replaced by $ (? , ^ ).    With this observation we can use the results derived 

at the end of Appendix C to find the change A 6 in 6        across a ray tan- 
^ * mn mn ' 

gency to a caustic,   i.e. , 

A 6        = 2 sgn C (32) 
mn m 

where C      is the curvature at the point k      on the dispersion surface of the 

curve formed by the intersection of the H       branch of the dispersion surface 7 m r 
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Fig. II-3 Side view of cross-section used in formulating the 

Fourier representation of the fields of a scattered 
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with the plane parallel to V     and to the normal to the caustic.     The term 
—m 

l({|T| ) influences (32   only through the normal to the caustic.     The normal 

may be found from the ray equations VxL=V     xL      =0 and the caustic 
—n      —n        m      —m 

condition D        =0.     Thus,   knowing that 6 = 6     at the interface and that 
mn mn n 

6 is constant along the ray except for the change given in (32) at the ray 
mn 

tangency to a caustic,   £ can be found everywhere along the scattered ray. 

With the foregoing results,   the functional form of all the terms in 

(29),  and hence the scattered ray fields E      due to a point source in the 
—m r 

presence of a gently curved interface,   can be found directly from ray-optical 

considerations.     Note that the method described in this section gives the 

locus cf observation points at which a particular scattered ray contributed 

to the fields.    While the inverse problem of determining the  rays that c on- 

tribute at a given observation point for the case of a curved interface would 

be based on the same ray tracing concepts,   in general it poses a much more 

difficult analytical problem.    This is especially true if multiply scattered 

rays are present. 
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E.    BRANCH CURVE CONTRIBUTIONS TO THE FAR FIELDS 

In this section the branch curve contributions to the far fields will 

be evaluated and interpreted in terms of lateral rays.    The branch curve 

contributions first appear as the branch point contributions to the steepest 

descent integration over 11   as found in Appendix B.     Recall from the dis- 

cussion given in Appendix B that a branch point contribution to thv f\   in- 

tegration may occur in the scattered field Fourier integrals (4) but not in 

the direct field integrals (2).    Such contributions arise only from those 

branch points of the * . 's appearing in F(§ , r\ ) that are not at the same 

time branch points of *       and H     appearing in P(? , T) ).    Furthermore. 
m n      r 0 

branch point contributions to the total fields come from only those branch 

points ofH      atwhich K       is real see Appendix B.    Finally,   in Appendix 

B only the branch points of H .    lying on the real T\   axis and at which H       and ■t m 
K     are real were considered since the contributions from branch points not 

n 
satisfying these conditions are exponentially small. 

1.       Stationary Phase Evaluation 

In the isolated saddle point contribution (B-3) to the T)   integration, 

F   " , 1    (5 )  ,'   will have branch point singularities at the branch points of 

H ^    § , 11   (C ) |<    However,   these branch points do not give rise to lateral rays 

and hence,   only the branch point contributions to the f)    integration give rise 

to lateral rays.    This conclusion follows from the fact that for ?   near a 

branch point of X ^    ? , ri   {§ )     ,   in the H   integration a branch point of 

F(§ , Tl ),   considered as a function of 1 ,  lies near a saddle point.    When a 

more accurate steepest descent integration over V    is carried out for this 

case,   it is found that the branch point in '   occurring in the isolated saddle 

point result is no longer present. 

A more detailed discussion of the nature of F(?   f\ ) near the branch 

curves than given in Appendix B is necessary in order to cast the branch 

curve contribution into ray-optical terms.     To this end consider the vicinity 

of a branch curve of some H .    that appears in F(? ,T1 ) but that is not a branch 

of P{v, 1 ).    In the vicinity of the branch curve of H ^    but away from cusps 
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or crossings of the branch curve,   K    ^   g    (? , Tl ) ^   \lgt  (§ , 1 )   where g^ 

and g.    are real and regular and g     is zero on the branch curve -- the zero 

is simple along any trajectory crossing the branch curve.    For convenience, 

the plus sign before the root is taken if ^ .    corresponds to an upgoing wave, 

and the minus sign is taken otherwise.    The argument of s%t (? .'H )   is 

assumed to be defined in such a way that the above sign convention holds. 

The branch curve condition g    (5 .'H ) = 0 can be solved for T]   as a possibly 

multivalued function 

Tl =rib(? )    . (33) 

In the vicinity of the branch curve and excluding cusps or crossings of the 
'I' 

branch curve,  g, (? , rl ) can be approximated as 

n-v«, ri=Tib(?) 

(34) 

Since F(? , T| ) ig explicitly a function of H        in the vicinity of the branch curve 

of H      one can write F(? , r| ) = F (? , 11   , V g. ).    Using this form for F(T , 11 ) 

and with the help of (34),  F(5 , ^1) for constant ?   can be approximated to first 

order about T| = r|    (5 ) as 
b 

-    SF ar       /Tg     r 
il -tl, (35) 

w hereF,   ^F/ar|,   hTlJg.   and^g. /ar|   are all evaluated at Tl ^r;    (? ). 

Comparing the expansion in (3 5) with that given in (B  4) it is seen that the 

vT   gi (S.'H ) I • A corresponds to two branch points 

being close together in the l|   integration for this value of 5 .    For critical 
points at these values of ?   and H ,  the derivation of the branch curve con- 
tribution is no longer valid but the ray-optical representation for the con- 
tribution is,   since this singularity is introduced only by the choice of the 
(x, y) coordinates. 
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quantity bF/h V1! -
T

1L   appearing in the branch point contribution (B   7) can 

If      /TgJ 
be replaced by 

Ä/—      ÖT1 
.    Recall that in Appendix B,  Jl\ -T\     was taken 

to be positive for 1 "I.  positive real,  thus requiring from (34) that 

argy^g^. n^/Sri    =   arg yg^?, TI b + A ) where A > 0 is small. 

The integral of (B-7) over 5   can now be evaluated by the method of 
(22) 

stationary phase, thus obtaining the branch curve contribution I _   _    to 
ß. C. 

the integrals in (4).    The stationary phase points  in the ?   integration of the 

terms in (45) are the solutions of 

i »[».\«»]-»i[l.'lkrt»]  +P2[;,r,b(5)j^r,b(5)=0. 
(36) 

It is assumed that dfl   /d5   at the stationary phase point is finite (were it in- 

finite,   two branch points would have coalesced in the 11   integration,   in which 

case (B-7) would no longer be valid).    Equation (36) is equivalent to the condi- 

tion that the tangential derivative of P(5 , fl ) on the branch curve of H      be 

zero.    Thus,  the branch curve contributions come from the critical points 

(5   ,1   ) on the branch curves at which the tangential derivative of P(5 ,11 ) 

vanishes.    Performing the stationary phase integration,  one finds that 

d2P, 

iB.C.-n-f   II       +<VV] 
i   C. P.l 

bF 

k/T 
l e 

..  D   .TT..    ap ,    dp. 
jkoP -J^sgn^+sgn^r) 

»ri ap/^i^ld^W2!172 

<?c'V 

(37) 

where the first sum is taken over all critical points,  at which P(? ,T\ ) is 

real,  on that portion of the branch curve of K      on which K      is itself real. 

The second sum is taken over the various branch curves appearing in 

F(?,r) ) but not in P(5 , TI ). 
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2.  Ray Interpretation of the Branch Curve Contribution 

As pointed out in Section C.  the branch curve of H    on which *     is 

real is the projection into the C7 ,TI ) plane of the rim bounding the f  tn branch 

of the dispersion surface.    On the rim,  the /,      branch adjoins another real 

bvanch K     of the dispersion surface and the normal is parallel to the (',?]) 
P 

plane --   see Fig.  4-a where A-A is a segment of the rim.    With this descrip- 

tion of the dispersion surface near the rim of the I      branch,  it will be 

shown that the critical point condition (36) can be interpreted in terms of a 

lateral ray that leaves the source along v    --   see Fig.  4-b -- is incident on 

the interface at (x1, y', 0), travels along the interface parallel to v»      and then 

leaves the interface from the point (x", y", 0) along the direction of v     , 

arriving at the observation point (x, y, z).    While lateral ray contributions 

can exist In both the e    and €     media,  the dispersion surfaces may be such 

that these contributions are present in only one medium,  or in neither 

Since the segment of the lateral ray on the interface corresponds to 
th 

the I      scattered ray at the critical angle, power flow on this segment will 

be in the direction of v    .    Hence,  lateral ray contributions will exist only for 

v     •  L     > 0 and one can replace the unit step function u ± (T)    -T]     ) |   appear- 

ing in (37) by U(v,  •  L    )•    Verification of this intuitive argument by analyti- 

cal methods is involved and will not be considered. 

Using the form of P(? , f|  ) appearing in the scattered field integrals 

(4), the critical point condition (36) becomes 

9K 

(x +z m 
9K SK 

9? 
- z' 11   \      L     / , m _-,     +     (y+Z   — 

9K       dr|, 

9T!    7d? 

3 , 4    for   z >   0 

1,2    for   z <    0 

ri =Tl b(? ) 

(38) n = 1 , 2 ; m = 

In order to verify the ray interpretation of (38), recognize that since v     is 

normal to A-A in Fig. 4-a,  it is also normal to th 

which is the projection of the rim A-A,  and hence 

normal to A-A in Fig. 4-a,  it is also normal to the branch curve T| =ri    (' ), 
b 
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J&T' 
2) 

-P'l 

^„(«•t.t) 

(a)   Determination of lateral ray structure from the dispersion 
surfaces   (m = 3, 4 branches omitted favrfilarity) 

Un^.y.«) 

jfm(m«3,4) 

Uj.x) 

(b)   Struct -e of the lateral rays 

Fig.   11-4 



If L   =x x' + y y' - z  z'.L   =x (x" - x^ + y (y"- y') and Ls x (x-x") + 

y (y-y") + z  z, it Is easily verified with the help of (16) and (39) that (38) 

is equivalent to the condition  v^ x L    = ji. x L^ x L     =0 for the same 
—m 

I    and n     with v   • L   and v      ■  L     positive, 
c c —n     —n —m      —m 

Using the ray interpretation of (38), the various quantities appearing 

in (37) can be expressed in ray-optical terms --   see Appendix E.    Finally, 

because the branch curve of H      is not the same as those of K m and H n» thi8 

branch curve does not appear in A   or (5     and hence n       -"in 

9 F 
&_ Y,      A  ;   Y. ^m    Imn   n       Imn 

'^ 

f      (? ,r] ,77" ) mn 

(40) 

where t      (? ,TI ,  /gT ) = r      Jf •'J ) *■ the vicinity of the branch curve of 
mn t mn 

K     .    With the help of (40) and (E-l), (E-5), (E-7) and (E-10) of Appendix E, 

the lateral ray contribution to the scattered field« can be written as 

(Er) 
B.C. 

k I 11 
m,n I C.P. 

-jk (N L +N.L,+N   L    ) _ . onnttmm        .It. 
Ä    Y,      A e -j-6 

U(v .L   )-m tmn   n 4 -tmn 

•   /jQjI^xL^.D^.^x^l 

(41) 
c    c 

The first sum is over all critical points (?   ,r\   ) on those segments of the 

branch curve of n      on which K      is real.    The I   summation is taken over 

all branch curves for which t   ^ m, n and that are not also branch curves of 

K      or H    .    The sums on m and n indicate summation over the possible inci- 
m n 

dent and diffracted segments of the lateral rays. 
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The results given in (41) are not valid when the denominator goes 

to zero.    This can happen if | Q   |    E   U Jcbg, 1%% )Z + (9g. /^ )2 = 0, which 
V V V 

corresponds to | ?    | i   h    |    -   "   along an open branch of TI -^   #| ).    The 

denominator is also zero if L    = 0, which indicates that a stationary point 

of the m, n scattered rays lies on the branch curve of H      and occurs when 

the observation point lies on the surface bounding the region in which the 

lateral rays contribute to the field.    Also,  for some observation points it 

can happen that (z    x L. ) .  D.        • (z    x L. ) = 0 with L.  ^ 0,  which occurs 
-o      -I'     --tmn   ^-o      -I -I 

when two critical points coalesce.    The condition Q    = 0 and (z   xL   ) • 

D. • (z    x L.  ) = 0 for L.   ^ 0 correspond to shadow boundaries and 
..-tmn    '-o     —t, -I 
caustics in the lateral ray field,  singularities that do not exist in the lateral 

ray fields excited by line sources       o- by point sources in isotropic media. 

Since the lateral ray fields are of lower order in k    than the scattered 7 o 
and direct ray fields, the latter will usually form the- dominant contributions 

to the far fields of the source.    However, in geometric optical shadow regions, 

the direct and scattered ray fields will be exponentially small (as will be all 

the terms in the asymptotic expansion of the stationary point contributions) 

so that the lateral ray fields, when present, form the dominant contribution. 
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Chapter III 

GROUP VELOCITY AND POWER FLOW RELATIONS FOR SURFACE 
WAVES IN PLANE-STRATIFIED ANISOTROPIC MEDIA 

A.     INTRODUCTION 

In this chapter two aspects of the power flow associated with electro- 

magnetic waves in plane-stratified, anisotropic, dispersive media and their 

application to surface wave propagation are considered. The first aspect is 

that of the relation between the group velocity and the velocity of energy 

transport of surface waves; the second is the relation between a dyadic sur- 

face impedance and the power flow and stored energy in the structure it re- 

presents. 

It is well known that monochromatic plane electromagnetic waves in 

a homogeneous, dispersive,  anisotropic medium that is also lossless and 

linear, e.g., the ionosphere for small-signal propagation,  carry power in 

the direction of the normal to the plane wave dispersion surface.    Specifically, 

the velocity of energy transport of plane waves in such a medium is equal to 

the group velocity, that is, the gradient in the wave number space of the fre- 
/ic  23 \ 

quency.      * As was seen in Chapter II, this relation between the group 

velocity and the velocity of energy transport finds an important application 

in the ray interpretation of the far fields radiated by sources in anisotropic 

media. 

It is shown here that an analogous relation involving the group velocity 

holds for the case of surface waves in plane-stratified, dispersive, anisotropic 

media that are also lossless and linear,  in that the group velocity of surface 

waves that can propagate in such a medium may be interpreted as the sur- 

face wave energy transport velocity.    For such surface waves, the direction 

as well as the magnitude of the real part s of the complex Poynting vector is, 

in general, a function of z, the coordinate in the direction of stratification. 

(An example of this dependence is described in Chapter IV).    Therefore,  s 

divided by the energy density cannot be identically equal to the surfac e wave 

" 
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group velocity,  which is a vector independent of z.    It will b«? shown, how- 

ever, that the group velocity of the surface wave is identical to the velocity 

of energy transport of the surface wave taken as a whole, i.e. , the gradient 

in the transverse wave number plane of the frequency is equal to the integral 

over z of £   divided by the corresponding integral over z of the stored energy 

density.    In a manner analogous to that for plane waves in anisotropic,  homo- 

geneous media, the relation between group velocity and energy transport 

velocity for surface waves will prove  useful in Chapter V where the ray in- 

terpretation for the surface wave fields excited by a point source is formulated. 

The proof of the relation between the group velocity and the energy 

transport velocity is furnished for two configurations.    In Section B, the case 

considered is that of a plane-stratified medium filling all space, while 

Section C contains the proof for the case of a plane-stratified medium filling 

the half-space    hove a perfectly conducting plane at z = 0. 

In Section D, the relation between the dyadic surface impedance at 

z - d,  which represents a plane-stratified,  lossless, anisotropic medium fill- 

ing the region 0 <  z <  d and bounded at z = 0 by a perfectly conducting plane, 

and the power flow and stored energy in this region is considered.    With the 

help of the developments of Section B,  it is shown that the power flow and 

stored energy in the region 0<  z < d are directly related to the derivatives 

of the surface impedance,  with respect to transverse wave numbers and fre- 

quency, and to the components of the r.f.  magnetic field transverse to z at 

z = d.      The relation of power flow and energy to the surface reactance apply 

for all frequencies and real transverse wave numbers,  not just those asso- 

ciated with surface waves.    In particular,  for surface waves propagating above 

a dyadic impedance plane, the power flow and energy relations are shown to 

be significant in calculating the energy transport velocity. 

Section E  is devoted to a discussion of the dyadic surface impedance 

representation of a semi-infinite, plane-stratified,  lossless,  anisotropic 

medium for ranges of frequency and transverse wave numbers for which the 

fields in the medium are evanescent at infinity.    Again the power flow and 

stored energy relation involving the surface impedance are obtained.    The 
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power division between the space inside and outside of a surface wave guiding 

structure is determined in terms of the dyadic surface impedances defined in 

Sections D and E. 

Appendix F treats briefly the dyadic admittance representation of a 

medium above a perfectly conducting plane.    At those values of frequency and 

transverse wave numbers where the impedance formalism breaks down, the 

admittance formalism may,  in general,  still be used.    Power flow and stored 

energy relations in terms of the surface admittance are given. 

The results derived in this chapter,  for plane-stratified media that 

are uniform in the planes normal to the direction of stratification,  are genera- 

lized in Appendix G to configurations that are periodic in the plants normal 

to the direction of stratification.    For surface waves in periodic configurations, 

a group velocity-energy velocity relation similar to that described above holds 

for the averages (over the periodicity) of the Poynting vector and stored 

energy density.    Also,  it is shown that the average energy flow and average 

stored   energy in periodic configurations represented by a dyadic surface 

impedance are simply related to the derivatives of the impedance with respect 

to transverse wave numbers and frequency. 
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B.    STRATIFIED MEDIUM FILLING ALL SPACE 

A lossless, anisotropic, dispersive, plane-stratified medium is 

assumed to fill all space.    It is uniform in the x and y directions and its 

interaction with a monochromatic electromagnetic field can be described 

in terms of the constitutive parameters of the medium, the dielectric ten- 

sor e   and the permeability tensor u .    Since the medium is lossless,  c   and 

a   are Hermitian,      '       and because of the assumed uniformity in x and y, 

they are independent of these coordinates.    The tensors e   and u    are analytic 

functions of the angular frequency uu   and   are assumed to be continuous 

functions of z except for a possibly denumerable number of finite jumps. 

The z dependence of e   and u   is further assumed to be auch that the medium 

supports surface waves propagating transversely to z.   Such surface waves 

are solutions of the source-free Maxwell equations and have the form 

E(r;k ,(D) 
— — —t 

H(r;k , tu ) 

e(z; k. it) 

h(z;k , ■ ) 

•Jk 
(1) 

where e and h tend to zero as |z|    approaches infinity.    As used throughout 

this chapter p^ = x x + y y is the position vector transverse to z and k   = 

x   k    + y    k    is a real transverse wave vector.    The vector amplitudes e and 
—o   x     ■»■o    y — 
h are required to be such that the electric and magnetic energy densities, as 

well as Re(e x h  ), are integrable on the infinite interval -•   <   z <    • .    Be- 
_ -jk. . p 

cause the dependence of E and H on x and y is e   —l   —, the electric and mag- 

netic energy densities and E x H   are independent of p.    Furthermore,  since 

the field components transverse to z,  e   and h   must be continuous in z across 

any jump in e   or u » they must be continuous functions of z.    For simplicity, 

e and h are assumed to be Rms quantities. 

In the absence of sources. Maxwell's equations in a medium described 

by e   and a     are 

V   x H = juu €   .  E 

(2) 
^7   x E •JH'U H 
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where the harmonic time dependence e        has been suppressed.    Substitut- 

ing E and H from equation (1) into (2) results in six linear homogeneous 

equations in the six unknown field components,  four ordinary differential 

equations in the variable z and two algebraic equations.    For any narticular 

medium that can support surface waves,  these six equations will have solu- 

tions satisfying the cavity-type boundary conditions e = h = 0at|z|   =<x,,  and 

possessing the integrability properties described above,  only for restricted 

values of the oarameters k   and 0 that some functional relation of the form 

D (k . m) = 0 
s —t 

(3) 

where in general D   is a regular function of k   and m.    Relation (3) is the 

surface wave dispersion relation and determines the possible surface waves 

that can propagate transversely to z in the particular plane-stratified medium. 

Let k   and r  be such as to satisfy the surface wave dispersion rela- 

tion (3) and consider neighboring values k   + dk   and ■ + d»j, also satisfying 

(3).    The fields ofthat surface wave oropagating with wave vector k   + dk 

at the frequency v  + du  are given, to first order in differential quantities, 

by • 

E(r;k   + dk , ■ + du ) = E(r; k ,   tj) + 6 E(r; k , -u ) 

H(£;k   + dk , -i, + do) = H(r;k , <v) + ^Hfrik , «) 

(4) 

where the variation 6   symbolizes the differential operation 

6 = dk   • V      + d u  -r^- 
—t        k 0 ■ (5) 

with V 
k 
-t 

x 
—o 

ft ^ 
r-r— + y      . .    , and the partial derivatives of E and H are 

x u y 
evaluated at (k ,   v).    Since E. and H. are continuous functions of z for both 

-1 —t --t 
sets of values (k , m ) and (k   + dk , ■ + do ),  it is seen from (4) that the  varia- 

—t —t       —t 
tions 6E   and 6H    must also be continuous functions of z.    The differential 

~t —t 
equations that 6 E and 6 H satisfy can be found by applying the variation B to 
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Maxwell's equations.    Recalling (5) and because e   and  j   do not depend on 

k , the variation on Maxwell's equations results in 

V x 6 H = jdv 

v   x 6 E = .jd.n 
8 m 

E + jn) e   •  6 E 

H - jma    •  fcH 

(6) 

Consider now the identity 

V • (E x 6 H + r E x H   ) = f H • V x E - E ' • ■  x t H  •   / x f E - 6 E • V x H 

(7) 

With the help of equations (2) and (6), the right-hand side of (7) can be re- 

written to give the relation 

V-(E    x6H+6ExH) = - jd(u(E 
Bm e i mi 

E +H 
94| — 

H) (8) 

*       * 
when the assumption that C    and u   are Hermitian is used to write 6 E • e   •   E 

as E    •   e    •  6 E and f^H-u     -HasH    -ti-^H.     The first term on the 

right-hand side of (8) is twice the time average electric energy density we 

while the second is twice the time average magnetic energy density w   .      '     ' 
h 

As pointed out, w    and w    are independent of_D .    In terms of the total energy 

density w = w    + w   ,  equation (8) can then be written 
e h 

v.(E    X(^H+6ExH) = -j2w d.« (9) 

The divergence term on the left-hand side of (9) is now evaluated by 

expanding b E and 6H and subsequently applying the 9   operator.    With the 

help of (5) and (1), it is seen that 

-jk   •  0 
ft E = (fte - jdk   • £ £) e 

ft H = (fth - jdk  • £ h ) e 
"A. (10) 
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The variations on the transverse vector amolitudes,   6e   and bh ,  are con- 
—t -1 

tinuous functions of z since 6E ,   6 H ,   e   and h   are,  a fact that will prove 
■"%        "^t    —t """t 

useful later.    Since e and h are independent of D,  using the above relations 

one has 

V.(E    x6H+6ExH) 

4 ft A A 
= V . [e x 6h f 6£ x h  - jdk • ^(e  xh+£xh)] (11) 

?i * « | 
= |— z   • (e   x6h+6exh   )- j2dkA • p r—(z    • s) - j2dk   •   s az-o- -       -_'J_t- hz —o   -       J    -t    - 

* 
where s(z) = Re(e x h   ) is the real part of the complex Poynting vector 

ExH=exh.    It is easily seen that the term z   .   s is independent of z, 

ie., b/^z{z   •  s) = 0,  since in a source-free region filled with a lossless 
—o 

medium, the divergence of the real part of the Poynting vector is zero and, 

for the plane-stratified medium under discussion, s  is independent of £, so 

% % § 
that-r—(x   •  s) = -r—(y    • s) = 0.       Thus with the aid of (11),  equation (9) be- 

ox   —o    — dy -»-o    — 
comes 

13 * * 
j —  —   z    .(e    x6h+6exh) + dk  • s = wdii)     . (12) 

2   oz   —o       — _       —     — —t   — 

In the derivation of (12), the essential assumptions used are that the 

medium be lossless and that it be plane-stratified so that waves of the form 

given in (1) satisfy the source-free Maxwell equations.    The assumption that 

(k , ju ) and (k   + dk , i« + du ) satisfy the surface wave dispersion relation (3) 
—t —t        ■-% 

serves to restrict the changes dk   and doi  in k   and it to a surface in k   - ■ 

space,  so that 6e   and 6h   will be continuous functions of z for all -00 < z< <*> 
—t —t 

and tend to zero as  | z |   *   0D . 

Since the wave vector k   + dk   and the frequency ■ + du   satisfy the sur- 

face wave dispersion relation, to first order duu = dk   •  Vj^   uj(k ) where (i'(k.) 

is the solution of the dispersion relation (3).    Using this expression for die , 

and after rearranging, equation (12) becomes 

13 4 4 
j— r—z    • {e    x6h+6exh) = dk   • (wV,   u; - s) .        (1 3) c  az —o      — _       —     _ —t K — 

Because e^ and h^ are continuous functions of z,  z0 • s is a continuous function 
of z and therefore 3/3z(z0 . s) cannot have a delta function behavior at the 
jumps of e or ij . 
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The term on the left of (1 3) does not vanish identically so that in general 

ja. ^ w^k ^   and hence in the surface wave case V     n cannot be interpreted 
1 _t 

as a local velocity. 

In order to eliminate the term on the left-hand side of (13), integrate 

this relation over z to obtain 

1 » 7\ x jt 

j -     ! rr— z    • (e   x 6h + 6e x h   )dz = dk   • (WV    JU -S) 
Z    J oz —o     — —       —     — —t k        — 

-OD 

(14) 

where 

•/   « 
dz (15) 

and 

W 
/ 

w d z (16) 

Because s   = z   •  s is independent of z, as discussed above, and is zero at 
z    —o    — 

|z|    = oo, since e and h are zero there,  s    is zero for all values of z.    Thus 
— — z 

s,  and hence S ,  are purely transverse vectors. 

Recognizing that 

« * * * 
z   • (e    x 6h + 6e x h  ) = z    •  (e    x 6h   + 6e   x h    )   .     (17) —o      — _       _    _        —o      _t        _t       _t     _t 

and using the fact that e ,  h ,   fie   and fih   are continuous functions of z,  one 
—^    —t      ■^t ~t 

has 

f»    3 * t ♦ ♦ 
r—   z   • (e  x 6h + 6e x h  )dz = z    • (e   x fih  + 6e    x h    ) 

J    3z   —o     —        —       —    - —o     —t       —t       —t     —t 

(18) 

which vanishes as a consequence of the boundary conditions on e and h at 

| z I    ■ • •    Hence, 
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dk   • (WV    (l) -  S) = 0 (19) 
"^ -t ~ 

and,  since S is a purely transverse vector and dk   is arbitrary,  it follows _ _t 

that 

?    uu   = S/ W     . (20) 

Although the real Poynting vector s can vary in  magnitude and direc- 

tion with z, the total real Poynting vector S is independent of z and represents 

the total surface wave power flow across a strip normal to S, infinite in z and 

having unit width.    The term W represents the total stored energy of the sur- 

face wave fields in an infinite cylinder, parallel to z, whose x-y cross section 

has unit area.    Equation (20)   thus states that the group velocity of the surface 

wave, V^ m ,  is equal to the velocity of energy transport S/W of the surface 

wave as a whole.    This statement for the surface waves in plane-stratified 

media replaces the relation V   U) = ^/w for plane waves in homogeneous aniso- 

tropic media and will be used in Chapter V to interpret the surface wave con- 

tributions to the fields excited by the point source of Chapter I in terms of sur- 

face wave rays. 

— 
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C.    STRATIFIED MEDIUM ABOVE A PERFECTLY CONDUCTING PLANE 

The plane-stratified medium described in the first section is now 

assumed to fill the half-space above a perfectly conducting plane at z = 0. 

Again, assume that the z dependence of e   and u   is such that surface waves 

of the form given in (1) can propagate transversely to the direction of strati- 

fication.    The vector amplitudes e and h of these waves tend to zero as z 

approaches infinity and satisfy the boundary condition e   = 0 at z =0.    The 
_t       * 

electric and magnetic energy densities,  as well as Re(e x h   ),  are now 

assunned to be integrable on the semi-infinite interval 0 <   z <   0O .    As dis- 

cussed in the previous section, e   and h   must be continuous functions of z. 
—t —t 

Solutions of Maxwell's equations satisfying the above conditions occur only 

for values of k   and cu that obey a surface wave dispersion relition, 
—t 

D (k . o ) = 0, valid for the semi-infinite medium, 
s —t 

As in the previous section, the fields at two neighboring sets of values, 

(k , ,1) ) and (k   + dk ,  ,;• + du ), both of which satisfy the dispersion relation, 
"t —t        —< 
are considered.    Using equation (4), the fields E and H at (k   + dk ,  D + du) 

— —        —t        -^ 
are found, to first order, in terms of the fields and their derivatives, with 

respect to k  , k    and ■ , evaluated at (k , ■ ),    Since the variations in the 
x      y —t 

fields,  6E and 6 H,  in this problem also satisfy (6), equation (1 3) holds in 

this case as well.    Because the term on the left  aand side of (1 3) is,  in 

general, not zero, ^u  u   again cannot be interpreted as a local surface wave 

energy velocity.    However, upon integration of (1 3) over the interval 0 <   z < » 

the left-hand side vanishes and Vj^ g   can again be interpreted as the velocity 

of energy transport of the surface wave as a whole.    To see this, one recog- 

nizes that since e   = 0 at z = 0,  6e   must also be zero there.    Hence,  using 
—t —t 

equation (17) and recalling that e and h are zero at z  - » , it is seen that 

' 

i ^ * ♦ ♦ ♦ 
—   z    •  (e   x 6h + 6e x h   )dz = z    • (e    x 6h   + 6h   + 6e   x h    ) 
^z -o      - -        -     - -o     -t        -t        -t       -t     -t 

■ 0 

(21) 

Defining 

J W      I    w d z 

o 

(22) 
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and 

r* S =  I    s d z 

0 

(23) 

(S being a ourely transverse vector since s     =0) the integration of (13) over 

the interval 0 <   z <  ^   gives,  in view of (2 1), 

0 = dk    .  'WV     u, - S   ) 
1 -t 

(24) 

Again,  because dk   is arbitrary,  it follows that 

9.    ID  = S/W     . 
k — 
-t 

(25) 

That is to say,  for surface waves about a perfectly conducting plane,  the 

group velocity V     m   is equal to the velocity of energy transport S/W of the 
_t * 

surface wave as a whole. 

If a second perfectly conducting olane at z = d > 0 is present, it is easily 
seen that (25) is still valid for the fields between the conducting planes if 
S and W are now taken as    ^ J 

!•/• d z and W = w d z 

Thus for waves in a parallel plate wave guide filled with a olane-stratified, 
lossless,  anisotropic medium,  the group velocity is eqaal to the velocity of 
energy transport. 
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D.     SURFACE IMPEDANCE AND POWER FLOW RELATIONS 

When formulating steady-state electromagnetic problems involving 

fields of the forrr. given in (1) in a lossless, plane-stratified anisotropic 

medium abcve a perfectly conducting plane at 2 = 0,  it is sometimes profitable 

to represent the effect of the structure   below a plane z =d >   0 on the fields 

in the region z > d by a surface impedance dyadic at z = d.    The impedance 

dyadic Z   may then be employed as an equivalent boundary condition at z = d 

when solving for the fields in the region z >  d.    In this section the relation 

between the derivatives of the imoedance dyadic,  with respect to the spatial 

wave numbers k    and k   ,  and the oower flowing in the region 0 < z < d will 

be established and the significance of this relation for surface waves supported 

by such an equivalent impedance plane will be pointed out.    The relation be- 

tween ^Z /9(u  and stored energy in the region 0 < z < d will also be established. 

In order to define Z   and to find its relation to oower flow and stored 

energy in the region 0 < z <   d,  consideration is first given to the auxiliary 

problem of finding the fields in this region when H   of the form given in (1) 

is specified at z =d.    Thus,  one looks in the region 0 < z <   d for the solution 

of Maxwell's equations that satisfies the boundary conditions 

Et = 0 (26) 

at z = 0 and 

j('t)t P) 
Ht(r.t) = hde (27) 

at z = d.    All values of k   and tu,   except those at which Z    is  singular,  are con- 
-1 ■ 

sidered (for further discussion,   see Appendix F).    No restrictions are placed 

on the fields in the region z > d.    In fact, the medium filling the region above 

the plane z =d may be taken to be arbitrarily stratified,   since,   with H   rigidly 

prescribed at z = d, the medium does not affect the fields for 0 < z <   d.    The 

medium filling the region 0 < z < d is assumed to be lossless,   uniform in x 

and y and characterized by €  and u   which are analytic functions of u). 



68 

Specification of the above boundary conditions is sufficient,  in 

general, to uniquely determine the fields,  and hence the oower flow and 

stored energy, in the region 0 < z < d.    Solving this auxiliary oroblem for 

arbitrary polarizations of h   then permits a unique determination of the 
—d 

dyadic surface impedance Z .    Having determined Z  from the auxiliary prob- 

lem, one can now solve for the fields above the impedance plane z = d in 

terms of Z , the excitation in the region z >  d,  am.   he boundary conditions 

at z = <» .    The requirement that H   be continuous across z = d now oermits 

one to uniquely determine the fields,  and thus the power flow and stored 

energy,  in the region 0 < z < d in terms of (H.)        ,+ and the given Z   . 
— t  z = d 

In practice,  the auxiliary problem need be solved for only two linear- 

ly independent polarizations of h,,  since the linearity of Maxwell's equations 
—d 

permits the solution for any other polarization of h^ to be expressed in terms 

of those for the two independent polarizations.    Thus, at each of the values 

of k   and ■ to be considered, one solves for the fields in the region 0 < z < d 

when h, takes on two linearly independent polarizations,  e.g. ,  h    = x    «.nd 
—a —a     —o 

h, = y   .    Having found the fields,  which will be of the form given in (1),  for 

both polarizations of h^  Z   may uniquely be defined by requiring that the re- 

lation 

(E   ) =Z • (z    xH   ) (28) 
-"t  z = d      ■       —o      —t   z = d 

be satisfied for both sets of fields.    This requirement is equivalent to specify- 

ing four inhomogeneous,  linearly independent equations from which the four 

unknown elements of Z   can be found.    If one now wishes to solve for fields of 

the form given in (1),   in the region z > d,   relation (Z8) may be used as a 

boundary condition at z =d, which will ensure that the transverse fields connect 

continuously to valid fields in the region 0 < z < d.    That is,  if e and h in 

the region z > d are such that (28) is satisfied,  then, taking h    as (h   ) +, 
—d —t  z = d 

the corresponding e in the region 0 < z < d will be such that (e   ) _  = 
— — t   z = d" 

Having thus defined Z , the meaning of its derivatives with respect to 

k  , k    and (u can be determined.    To this end,  assume that the fields in the 
x      y 
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region 0 < z < d are known and h . of (27) has been selected such that the 
—d 

derivatives of the fields with respect to k  , k    and ■ exist.    Equation (12) 
x      y 

can now be emoloyed where dk    and dv in the variation 6   are arbitrary and 

independent.    Equation (1 2) is valid for the fields in the region 0 < z < d 

since the assumptions used in deriving it are also satisfied in the present 

case - see the text after (12).    The restrictions placed on dk    and duu in the 

first section are not necessary in the present discussion since, as previously 

mentioned,  solutions of Maxwell's equations for which e   and h   are con- 
—t —t 

tinuous in z will exist in the region 0 < z < d for all k    and m (excepting the 

singular points of Z, as discussed in Appendix F, thus ensuring that 6e    and 

6h    are continuous functions of z for all dk   and dv .    Since the fields are — t ~t 
bounded as z approaches d and as z approaches 0,  it is permissible to in- 

tegrate (12) over the closed interval 0 <   z <  d.    Performing the integration 

and using (17) yields the relation 

jii   •  (e*x 6h   + 5exh*) = W , dw   - dk  . S . .    (29) 
£.  —o     —t        —t       —x     —t ,        a —t   —a 

z = d 

Here 

= 1 W    =   I    wdz (30) 

and 

Sd = Jldz     ' (31) 

Note that since —   s    = 7 .  s = 0 and(s   ) = 0,  s    = 0 for all 0 < z < d 
^zz — zz=0 z 

and hence S , is a transverse vector. 
— d 

Since E and H have the form given in (1), the impedance relation (28) 

may be rewritten as 

(el = Z   .  (z    xh   ) 
— tz = d       -       —o     —tz = 

(32) 

Applying the variation 6 to the above equation gives 

((>   ) = Z   .  (z     x 6h   ) + 6Z -Uxh   ) (33) 
— t  z=d      »       —o       —t  z-d ~      —o    —t  z=d 
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Using (ej        , from (32) and (6 e   )        , from (33), it can be verified that 
— t  z = a —t z = d 

z    . (e*  x 6h    + 6e   xhj ■   -L(z   xh*) .6Z   • (z   x  h   )] . 
—o     —t        —t       —t   —t z = d —o    —t ■      —o     —t     z = d 

(34) 

when the anti-Hermitain property    of Z   is used to write 

[(z   xh*). Z .(z   x 6h  )] = -[(z   x 6h ) •  Z*. (z   xh*)] .    With re- 
—o   —t      ■      —o      —t     z = a —o      —t       ■       -o    —t      z = a 

lation (34),  equation (29) becomes 

-ji- [(z   xh*) .  6Z . (z    xhJ] = W.dn,  - dk  •  S , . (35) 
2     —o   —t ~      —o    —t     z = a a —t    —a 

Since dk  ,  dk    and dui   are all independent,  one finds that x y r- • 

1 I    3Z 

i-zl(z   x h    ) . -r^- . (z   xh4)] -, 
2     —o    —t        äk        —o    —t     z=d       dx 

x 
S- 

ijU^*^)'— •(|#«V3..«'1 
dy     ' 

(36) 

and that 

1 |       3Z 

jMU   xh   ). -^  .  (z    xh   )] = W 
2 —o    — t        on;        —o     — t     z-d        d 

(37) 

It is thus seen that W    and S , can be found knowing only Z   and 
d-d m 

{hj       ,.   As previously pointed out, if fields of the form given in (1) exiut 
— t z = d 

in the region z > d and satisfy the impedance boundary condition at z = d, 

there will be unique fields in the region 0 < z < d that satisfy the continuity 

conditions (h   )        ,_ = (h J        ,. and (eJ = (O       ,+•    Because of the 
— t z=d        —t   z = d —t z = d'       —t z = d 

continuity of h    at z = d, the power flow and stored energy associated with the 

The impedance dyadic Z   is anti-Hermitian,  i.e., the matrix representation 
for Z  has the propertylhat the transpose conjugate 2+ is equal to -Z.  This 
property follows from the facts that az = 0 for all z < d and that the fields 
are continuous as z approaches d from below so that Re(e    x h   ) must 
be zero. 
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fields in the region 0 < z < d can be calculated from relations (36) and (37) 

using (h  )       . ■ Lim h  , i.e., the limit of h4 as z approaches d from above. 
-tz=d      z{d-t -t 

Since the relations (36) and (37) hold for arbitrary k   and «,  they 

are valid,  in particular,  for values of k    and uu that correspond to a sur- 

face wave.    Thus relations (36) and (37),  with appropriate values of k    and 

(D, furnish an alternative way of calculating that portion of the surface wave 

power flowing in the slab and that portion of the stored energy of the surface 

wave which is in the slab 

The relation between power flow and the derivatives of Z   with re- 

spect to k   and k    given in (36) does not appear to have been previously re- 
x y 

cognized.    While the connection between stored energy and dZ/hiv, to the 

best of our knowledge, has not been shown explicitly for the case of traveling 

waves, the connection between stored power and the impedance matrix of a 
(29) 

lossless junction is well known. 

The consistency of relations (36) and (37) for surface waves with the 

results obtained in the second section will now be shown.    Consider a sur- 

face wave oropagating in a lossless plane-stratified medium above a surface 

impedance plane at z =d.    The surface impedance Z   is assumed to be known 

and to represent the effect of a plane-stratified,  lossless medium above a 

perfectly conducting plane atz =0.    The surface wave fields in the region z > d 

are assumed to be of the form given in (1) with k    and ■ related through the 

appropriate surface wave dispersion relation.    The surface wave field« satisfy 

(1 3),  which, when integrated over the interval d < z < «, yields the relation 
00 OS 

- j4- z    • (e*x 6h    + 6e    x hj       . = dk   • IV    ■   f   wdz -   f sdzl  .   (38) J  2 -o      -t        -t       -t     -t   z = d       -t    L   k^     J J -     J 
-t 

d 

Since £   and h    satisfy the impedance condition (32),  equation (34) holds. 

Using (34) and the fact that for the surface wave dw = dk   • ^    uu , the above 
t       Kt 

equation can be written as 
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di.-v"{j "■u-JI[(ioxi^•^■•(i3
xit,] J 

dk   .   ( f  fdr + X    {[{Z    Xh J .  rr^-   •   («    X h J1 -t     I J  — -o 2 L -o   -t       5 k        -o    -t J   _ 

y z = d 

As discussed above, the terms containing 3Z /3k   and äZ /3k   that 

appear in (39) are equal to the x and y components of the power flow S . below 

the plane z = d.    Furthermore, the term containing   9Z/äii   is equal to the 

stored energy, per unit area in the x-y plane, below the plane z =d, namely, 

W ..    Thus (39) may be written 
u 

00 00 

dkt.Vk   .{Jwd. + Wj   =dkt.{J.dz + Sd} (40) 

-* d d 

or, since dk   is arbitrary, 

v
k   ID {   ir  wdz + Wd}   ■ f •<■♦£.    . (41) 

Finally,  from the definition of W    and S , given in (30) and (31),  equation (41) 
d —d 

is seen to reduce to 
00 oo 

V      g wdz =    ' £dz     , (42) 
— * o o 

which is precisely the relation found to hold in the previous section for sur- 

face waves above a perfectly conducting plane at z = 0.    Hence if a surface im- 

pedance boundary condition representing a plane-stratified medium above a 

perfectly conducting plane is used when solving for surface waves, the re- 

sultant group velocity V^ ou   is equal to the energy transport velocity of the 

entire surface wave, not to just that portion of the surface wave above the 

impedance olane. 



73 

E.    SURFACE IMPEDANCE FOR THE CASE OF EVANESCENT WAVES 

In the derivation of the power flow and energy relations for a surface 

impedance representing a plane-stratified medium above a perfectly conduct- 

ing plane,  the presence of the conducting plane served to ensure that s    =0 

and that the stored energy, per unit area in the x-y plane, and power flow are 

finite in the region 0 < z < d for all possible polarizations of (h )       , and all 
—t z = d 

real values of k    and M •    Since the fields of evanescent waves in a semi-infinite 

plane-stratified medium also oossess these two properties,  one would expect 

power flow and energy relations similar to (36) and (37) to exist in this case 

for the surface impedance representing the semi-infinite medium. 

Let a semi-infinite,  plane-stratified,  lossless,  disoersive,   aniso- 

tropic medium fill the region above the olane z =d.    By analogy to the case of 

the medium above a perfectly conducting plane,  consideration is first given 

to the auxiliary problem of finding those fields in the region z > d wiich satis- 

fy the boundary condition 

^t)z-.d-hd* 
j(U)t - kt •  0_) 

(43) 

at z = d and the boundary conditions 

Lim (E, H ) = 0 
z " m 

(44) 

In addition,  it is required that       £dz and        wdz exist.    The term "evane- 

d d 
scent",  as used in the rest of this section,  will refer to fields satisfying (44) 

and the foregoing integral requirements.     Evanescent fields will also have 

the property that s    =0.    The auxiliary problem is to be solved for all polari- 
z 

aations of h     so that the surface impedance may be defined. 
— d 

In general,  only for limited regions in k   - m space will the auxiliary 

problem have unique,  non-trivial,  evanescent solutions that satisfy (43) for 

all h , and thus permit definition of the surface impedance Z    .    Other values 
— d ~ s 

of k    and JJ will not be considered for one of two reasons.    First,  in media 

having an appropriate z  dependence,  non-unique,  cavity-type,  evanescent 

solutions satisfying (43) witn h    = 0 may exist for points lying on surfaces in 



74 

k    - i) space.    In such cases,   Z     will have singularities on these surfaces. 

(Discussion of such ooints and the derivation of a surface admittance forma- 

lism that is,  in general,   regular at such ooints,  are analogous to those 

given in Aopendix F for a medium of firite thickness above a oerfectly con- 

ducting plane.)   Second,  in some regions of k    - m space,  fields satisfying 

(43) will not be of the evanescent type for most or all nolarizations oi h   . 

Thus,  unless alternate boundary conditions are specified at z = ^ ,   such as 

the radiation condition,  the fields,  and hence Z    ,  cannot be uniquely defined. 
~ s 

Even if boundary conditions are impose at z = ^   and if Z     is defined in this 
~ s 

case (it is no longer anti-Hermitian), the associated fields do not possess 

the integration properties necessary to derive simple oower flow and stored 

energy relations. 

Hence only those regions in k   - u space in which the auxiliary prob- 

lem has unique,  non-trivial solutions satisfying (43) and (44) for all h     ^ 0 

will be considered here.    The regions where the auxiliary problem can be 

solved,  the nature of which depends on the particular medium under dis- 

cussion,  are assumed to exist and to form open sets,  i.e.,  not merely sur- 

faces,  so that k   ,  k   , and uu will be continuous,  independent variables within 
x      y 

these regions. 

Thus restricting k    and  r to those regions where unique,  non-trivial 

solutions of the auxiliary problem are assumed to exist for all polarizations 

of h ,,  the surface impedance dyadic Z     can be defined for the semi-infinite 
— d „ s 

region.    Since the linearity of Maxwell's equations permits the solutions for 

all h    to be expressed as a superposition of the solutions for two linearly 
— d 

independent polarizations of h   ,  one need consider only two such polarizations, 
— d 

e.g.,  h , = x     and h , = y   .    From the solutions of the auxiliary problem, 
— d     —o —d     -L-O 

which will be of the form given in (1),  for these two polarizations,   Z     can be 

found uniquely from the requirement that the relation 

i  
An example of a region where no evanescent waves exist is formed by the 

2        1 2        2 
points in and on the cone ■     =   (k    + k    ) when the medium being studied 

e   u        x        y B 

is free space.    Outside tnis cone unique,  non-trivial solutions of the auxiliary 
problem exist for all h ,. 

— d 
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(e J = Z     • (- z     x h   ) 
-t z=d      -s      x   -o     -t z=d 

(45) 

* be satisfied by the fields of both solutions. 

By analogy to the discussion given in the previous section,   Z     may 

be used as a boundary condition at z = d when solving for the fields below this 

plane.    Also,  requiring h    to be continuous at z = d uniquely determines the 

fields above this plane when the fields below are known. 

Assuming  Z     and the fields in the region z > d to be known,  equation 

(12) is employed in finding the power flow and energy relations in this region. 

Equation (12) is valid for the fields in the region z > d since the assumptions 

used in deriving it are satisfied in the present case - see the text after (12). 

The differential quantities dk    and du   in the variation 6 are arbitrary and in- 

dependent since k  , k    and ■ are independent variables.    Integrating (12) 
x      y 

from z = d to z = o»   gives 

-JT z    - {e* x bh    + 6e    xh*)        = W d.t- - dk   .S (46) 
2   —O        —t —t —t       —t , S —t     —8 

z=d 

where 

W ■J w d z (47) 

and the purely transverse vector S     is 
— s 

S 
— s J   2 d z (48) 

In a manner similar to that of the Drevio"" section, the term on the left-hand 

side of (46) can be written in terms of 6Z     if the anti-Hermitian property of 
~ s 

Z     is taken into account.    That Z     is anti-Hermitian follows from the fact 
„ s - s 

In the above relation,  -z     is used instead of z   »as was used in (28) and (32) — o . — o 
for the medium above a perfectly conducting plane,  because - z     is the out- 
ward unit normal for the configuration being considered.    The convention of 
using the outward unit normal in defining the impedance is based on the de- 
sire to have the impedance matrix be positive-definite when loss is present 
in the structure. 
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that s=0 for evanescent fields in a lossless, plane-stratified medium. 

In terms of 6Z    , (46) becomes 
~ s 

ji- [(-z   xh*) .   4Z    •  ("Z     x h = W   do; - dk   •  S     .       (49) 
'2 L     -o   -t ~8        —0     -tj s -t   -s 

Since dk  ,  dk    and du are all independent, the above relation can hold only 
x        y 

if 

♦        8Z 
x    *• (- z    x h^ ) •  -TT— • (- z    x h   ) L-o 2      —o     —t äk —o     -t 

X 

y z = d 

and 

1 ♦        a z 

iR-z     xh    ). -r^  • (-z     xh   )1 »m       . (51) 
2L    ~o     —t ouj —o     —t J        j • 

The foregoing relations should be compared to (36) and (37).    Note 

that if z    instead of - z    had been used in (45), the above relations would 
— o —o 

contain an additional minus sign. 

The concept of a surface impedance to describe the effect of the medium 

above the plane z = d on the fields below this plane can be employed to derive 

the dispersion relation for surface waves.    The physical configuration to be 

considered here consists of a plane-stratified,  lossless, anisotropic medium 

above the plane z = d >   0 and a second plane-stratified, lossless,  anisotropic 

medium between a perfectly conducting plane at z = 0 and the plane z = d.    It 

will be assumed that the values of k    and i of interest are such that the 
■ 

medium above the plane z =d is representable in terms of an anti-Hermitian 

surface impedance Z    that satisfies (45).    This restriction on k    and ■ is 
~s —t 

equivalent to the requirement that the fields in the region z > d be of the sur- 

face wave type for all (h  )       ..    (In special cases,  surface waves may exist 
— t z = a 

when the fields in the region z > d are of the surface wave type for only one 
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polarization of (h  ) .    Such cases are not included in the present dis- 
— t z = d 

cussion.)   The structure below the olane z = d is assumed to be reoresented 

by the surface impedance Z   that satisfies (32). 

Since e    and h    for the surface waves are continuous functions of z, 

these quantities must be the same in both (32) and (45).    Thus subtracting 

these two equations gives 

(Z   + Z    ) • (z     x h   ) = 0   , 
~        ~ s —o     —t , 

z = d 
(52) 

which is a homogeneous set of two linear equations in the two unknown ele- 

ments of (z     x h   )        ,.    For non-trivial solutions of (52) to exist one re- 
— o     —t  z = d 

quires that det(Z   + Z    ) = o,  which gives the surface wave dispersion rela- 
— «v   S 

tion D (k   ,   •) ) = 0.    At those values of k    and ■ which satisfy the surface 
s —t —t 

wave dispersion relation, (z    x h   )       , can be found.    If the partial deriva- 
— o     —t z = d 

tives of Z and Z     with respect to k  , k    and u are calculated, the oower flow 
- ~ s x     y 

and stored energy can now be found in each region by U'ing (36), (37), (50) 

and (51). 

Thus it is seen that the knowledge of Z  and Z    for the lossless plane- 
m0 «w S 

stratified structures previously described is sufficient to find the surface 

wave dispersion relation and the division of power flow and stored energy be- 

tween the two regions.    Also, this procedure can be applied when the struc- 

ture below the plane z = d is a semi-infinite medium whose regions in k   - HJ 

space, where the reactive surface impedance may be defined, intersect the 

corresponding regions for the medium above the plane z =d. 
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Chapter IV 

SURFACE WAVES ON A UNIAXIAL PLASMA SLAB; THEIR 
GROUP VELOCITY AND POWER FLOW 

A.     INTRODUCTION 

The group velocity of a surface wave propagating in a plane-stratified, 

anisotropic,  dispersive medium that is also linear and lossless was shown in 

Chapter III to be equal to the velocity of energy transport of the surface wave 

as a whole.    This velocity is defined as the integral of the real part of the 

Poynting vector over the coordinate in the direction of stratification divided 

by the integral of the stored energy density ovei this coordi.iate.    In this 

chapter the above relation is verified by direct calculation for .'he case of sur- 

face waves supported by a uniaxial,  cold-electron plasma slab.    The plasma 

slab is assumed to be of infinite extent and to be located in free space.    A 

static magnetic field of infinite strength and parallel to the interfaces between 

the plasma and free space generates the anisotropy. 

The characteristics of trapped surface waves propagating on aniso- 

tropic plasma slabs have been discussed in the literature for various specific 
(30) 

directions of propagation relative to the static magnetic field.    Wait has 

considered the surface waves propagating on a thin plasma slab with an 

arbitrary static magnetic field.    Requiring the plasma slab to be thin reduces 

the effect of the static magnetic field to that which would be produced by the 
(31) 

component normal to the slab alone.    Meltz and Shore discuss the excita- 

tion of surface waves on a slab of arbitrary thickness when the static magnetic 

field is perpendicular to the slab and of infinite strength.    In both of these 

cases, the anisotropy is such that the slab configurations have rotational sym- 

metry about the coordinate normal to the slab and hence the characteristics 

of the surface waves will be independent of the direction of propagation. 

Furthermore, as in Isotropie slab configurations, the velocity of energy trans- 

port of surface waves on these slab configurations will be parallel to the 

transverse wave vector. 
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When the static magnetic field is parallel 1 to the air-plasma inter- 

faces, the effect of the resultant anisotropy is more striking since then the 

characteristics of the surface waves on the slab depend on their directions 

of propagation with respect to the static magnetic field.    Also, the velocity 

of energy transport will not be parallel,  in general,  to the transverse wave 

vector.    Examples found in the literature,  of surface waves on slab con- 

figurations with axis of anisotropy parallel to the interfaces,  do not illus- 

trate these anisotropic effects as they are restricted either to propagation 

along       •     -• or normal to the static magnetic field.    In either case, 

the velocity of energy transport is parallel to the transverse wave vector. 

In this paper,  however, the surface wave fields are considered for arbitrary 

directions of propagation with respect to the static magnetic field of infinite 

strength.    It will be shown that for this configuration, the velocity of energy 

transport of each surface wave is not oarallel,  in general, to the transverse 

wave vector, and that the direction, as well as the magnitude, of the real 

part of the complex Poynting vector varies with the coordinate normal to the 

slab.    Thus the slab configuration provides a non-trivial example of the 

equality of the surface wave's group velocity and its energy tr msport velo- 

city.    The excitation of the surface waves is not considered here. 

In Section B the fields and dispersion relation of the E-type surface 

waves,  which have no component of R.F.  magnetic field along the static 

magnetic field,  are found.    A graphical procedure for solving the dispersion 

relation and the properties of the dispersion curves are discussed in Section 

C.    Section D is devoted to an analytical verification of the equality of group 

velocity and energy transport velocity for the surface waves.    In Appendix H, 

it is proved that the uniaxial slab configuration can support only the E-type 

surface waves described in this chapter. 
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B.      FIELDS AND DIf PERSION RELATION 

In this section, the fields and dispersion relation for surface waves 

on a uniaxial electron plasma slab are found.    The plasma within the slab 

is homogeneous and the s-perimposed D. C.  magnetic    field,  which is assumed 

to be of infinite strength,  is parallel to the y axis (see Fig.  1).    In the linear 

or small signal approximation,  the interaction of the uniaxial plasma with a 

monochromatic electromagnetic field may be described by a relative dielec- 

tric tensor e'.    Neglecting collision loss,  when the D. C.   magnetic field is 

in the y direction,  c' takes the form 
(31,   32) 

[«'] 

r 1      0       On 

0    1-X    0 

LOO 1 J 

(1) 

where X = im   /uu )    and ■    is the electron plasma frequency.    Thus in the plasma 
P P 

slab €   = €   C 'while in the air regions e   = c     1 ,  where 1   is the unit dyadic. 
«        o~ ~ o ~ 

The permeability tensor u  is given everywhere by u = u     i • 

The surface wave fields,  which decay exponentially in the air regions, 

have transverse dependence e •j(kxx f Kyy^  k    and k    being real transverse 
x y 

wave numbers.    These fields will be constructed from those plane wave solu- 

tions appropriate to the plasma region and those appropriate to the free space 

regions.    The plane wave solutions appropriate to the plasma slab are those 

waves of the form 

e ' (k) E(rf k)    j 

H(r, k) h' (k) 

-jk« r 
e    —   — (2) 

which can propagate in an infinite homogeneous plasma described by the rela- 

tive dielectric tensor e ' given in (1).    Similarly, the plane wave solutions 

appropriate to the free space are those having the form given in (2) which can 

exist when the plasma slab is absent. 
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Fig. IV-1     Anisotropie plasma slab configuration 

The plasma plane waves are found by substituting E and H from (2) 

into Maxwell's equations. The resultant equations are, when the time de- 

pendence e       is suppressed. 

k x e'   = ru    b' 

k x h' 
(3) 

c    e   • e 
o „      — 

M iltiplying the first equation by kx and substituting the second gives 
2    ,        , 2       2 

kx(kxe')=-k     e   -e   , with k    = (D   €    u    .    Expanding the triple cross- 
—     —    — o-,— o oo 0 

product, this equation may be written in dyadic form as 

(k?' € ' + kk - k2 1 ) •  e'   = 0       , (4) 

which is equivalent to three homogeneous equations in three unknowns.    For 

there to be non-trivial solutions of (4),  the determinant of the matrix repre- 
2 2 

sentation of the dyadic operator (k'c'+kk-k     1) must vanish.    Letting 

k = k    + z   K ,  with k    = x     k    + y     k   , the vanishing of the determinant re- 
—     —t     —o —t     —o    x     •'-o    y 
suits in the plane wave dispersion relation D (k,  tu ) = 0 for an infinitely ex- 

tended,  homogeneous,  uniaxial plasm i.    This plane wave dispersion relation 

may be solved for R .    Four solutions result,  which are 
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/      2 2 
/  k     - k 

V       o -t 

yd-xx k2.k2).k2 

o        y x 

(5) 

The sign choice before each root refers to waves carrying power or decay- 

ing in the positive or negative z directior.    Substituting each of the four solu- 

tions given in (5) into (4), the corresponding field vector e'   can be found. 

Finally,  the pertinent h^   can be calculated from (3). 

The above method may be repeated to find the olane wave fields e' 
—  a 

and h'    for free space.    Since k    must be the same for the entire surface 
— a —t 

wave if the transverse fields are to be continuous everywhere across the 

planes z = ± d, it follows that the free space wave vector k    = k    + z    K   . 
—a     — t     — o   a 

Substituting the form of E and H given in (2) into Maxwell's equations for 

free space gives 

k    x e'   = (uii    h 
— a     —a o — a 

(6) 

k    x h'  = 
— a     —a 

'»i e    e 
o — a 

From (6), the homogeneous equations that determine e'    are found,  in 
— a 

dyadic form to be 

Rk    -k    )l+k    k    I   •e'=0 
L   o     —a    m     —a—aj      —a (7) 

From the requirement that the determinant of the matrix representa- 
2      2 

tion of L(k    -k    ) 1  + k     k    J   vanish for non-trivial solutions of e '   to exist, 
o    —a    _     —a —a — a 

one can solve for H     as 

[ / k 2 - k 2 

a v     o     —t (8) 

When these values jf K    are used,  (7) reduces to k    • e '   = 0,  i. e. , the 
a —a   —a 

plane wave electric field is orthogonal to the wave vector k    ,  a condition 

that does not uniquely determine e' .    Commonly chosen solutions for e' 
"■ a a 
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are those corresponding to TM and TE modes with respect to the i direc- 

tion.    Other possible choices for e'  ,  which will prove more useful l.i this 
—a 

analysis,  are those of the so-called E-type and H-type modes,   which are 

appropriate linear combinations of the TM and TE modes.    The E-type 

modes with respect to y are characterized by the vanishing of the y com- 

ponent of the magnetic field,  while the H-type modes are characterized by 

the vanishing of the y component of the  electric field. 

In each region,  the surface wave fields will be a combination of the 

plane wave solutions appropriate to that region, the relative amplitudes of 

which can be found from the rad! ition condition and the continuity conditions 

at z = ± d.    Since the free space outside the slab is homogeneous,  the sur- 

face waves are characterized by an exponential decay of their fields away 

from the slab.    Such decay requires that H     be imaginary a id that for Region 

1 the sign choice in (8) be taken to give K    = -J|K    |   ,  sc that the fields will 

decay in the positive z direction.    For the plane waves in Region 3, the 

sign must be taken so as to give H     = J|K    |   ,  which will result in fields 
a a 

that decay in the negative z direction. 

It will be shown later that a surface wave,  whose fields in the plasma 

slab are a combination of those plane wave fields corresponding to 

/ 2        2 2~ 
H   =  ±     /(1-X)(k    -k    )-k ,  exists only for X > 1.    In Appendix H it is 

shown that H-type surface wave modes,  characterized by the vanishing of 

the y component of the electric field,  cannot propagate on the uniaxial plasma 

slab.    The plane wave   fields in the plasma region corresponding to 

/ 2 2 2 
K - ±    Ml - X)(k     - k    ) - k        are E-type modes and have the form 

v o y x ' 

2 
y   -"-o '   o        y        — o    y 

e'    =AGckk-y(k    -k    ) + z     knl 
— t-o   x   y   ■'-o     o        y        —o    y     J 

/=A(iierxH-z     k      I 
oL -o —o    X  J 

h 
- 

(9) 

with A an arbitrary constant. 
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As mentioned earlier,  the only requirement on e'    is that k    . e     = 7       ^ — a —a   —a 
0.    Hence,  we may arbitrarily select the transverse oart of e '    and then use 

the requirement k    •   e     = 0 to find the corresponding z ^  rnponent of e 
■■"a    ^ a a 

A particularly useful form of the transverse part of e'   is obtained by choosing 

it to be identical with the transverse oart of e ' as given in (9).    This choice 

will be seen to simplify the application of the continuity requirement on the 

transverse fields at z = ± d.    Following this procedure one finds 

e'   = BFX    k    k-y(k2-k2) + zkK 
— a        L~oxy-*-oo       y       —oyaj 

(10) 

h'   ■ B 
— a 

i») €     |  X       H 
oL—o 

z    k 
—o     X ] 

with B an arbitrary constant.    It is seen that the transverse part of h'   has 7 —a 
the same vector direction as the transverse part of h' .    It will thus be 

possible to satisfy the continuity conditions at z = ± d using only the plane 

waves exhibited in (9) and (10). 

Since the wave number H    must be imaginary, let 

••/T7 (H) 

so that K      = ± ja   where a is real and positive.    Then in Region 1,  H     = -ja  , 

for decay in the positive z direction,  and if D = x    x + y    y,  the fields are 
—     —o J-o 

2.2. ..1   -az        -t   - E = BTX   k   k   -y (k    -k    ) - z    jk a1e"a 

—        IL—o   xy-»-oo      y        —oyj 

H = B.  «ef-xja-z    k    1 
—        1       oL—o — oxj 

-ik    • p 
-az       -t   - 

e e 

(12) 

while in Region 3,  H    = ja ,  and the corresponding fields are 
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P 2       2 T    az    "J-t"- 
E=BJx    kk    -y(k   -k) + z    jk   aee 
— 3L—oxy     -Hao       y       —o     yJ 

-jk   •  p 
r i    cxz       —t    — 

H  = B0 D€      x    ja  - z     k        e  "   e 
— 3       oL—o —o    xj 

(13) 

The constants B    and B. have yet to be detex-mined. 

For simplicity in what follows,  define B as 

9   =   /(l.X)(k2 - k2) - k2 

V o        v x 
(14) 

so that in (5) K = ± g .    It will be shown that for a surface wave to propagate 

on the slab 8 must be real.    The fields in Region 2 will be the sum of the 

fields of the two plane waves having the vector form displayed in (9) and 

traveling in opposite directions along z.    The most general form of such a 

sum is 

-jBz j9z, E  = Ifx   k   k   -y   (k^ - OlfA. e-j8z ♦ A,ej8z) 
—       I L—o   xy-*-oo        yjl 2 

.    « , -jSz j8z 
+  z    k   8 (A, e  J      - A. eJ 

—o    y    '    1 2 

-jk   • P 
,}. '- (15-a) 

and 

H = i' e    (x    ß(A1 — o I—o 1 
-j8z JBz 

e - A2 e       ) 

k   iA*'iBz + A7ei8z)}e   B| 

x       1 2 J 

jk    • 0 

— o    x       1 
(15-b) 

with A. and A_ to be determined from the boundary conditions at z =± d. 

Requiring E    and H    to be continuous at z = ± d results in four homo- 

geneous equations in four unknowns from which the relative amplitudes as 

well as the surface wave dispersion relation can be found.    The continilcy 

conditions at z = d given the equations 



86 

-ad -j6d j8d 
Be =  A    e  J       + A    e'' 

i. 1 b 

ja   BjC = 9 (Aj e  J       - A2 eJ      ) 

(16-a) 

while those at z = -d result in 

_     -ad       ,     jSd -j8d 
B3e =  A^       +A2e

J 

(16-b) 

-ad       ol A      jSd -jBd , 
ja   B3 e = S(A1 eJ       " A2 e  J       ) 

Elimination of B    from the first two equations and B. from the second two 

gives the set 

i.A. .-I",» ♦-£-»♦ A,.* O-4-l 1 ja 2 ja 

i8d 8 -iBd B   . 
0   .A^ll.^-I   +  A2e 

J     (1+ —) 

.     (17) 

which has a non-trivial solution for A. and A    only if the determinant of 

the coefficients is zero.    The vanishing of the determinant yields the surface 

wave dispersion relation 

If expressions (11) and (14) for a and 8 in terms of k   ,  k    and k    = iv</c   u 
x      y o o   o 

are substituted into (18), the dispersion relation is seen to be of the form 

D8(kt. u)) = 0. 
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PROPERTIES OF THE DISPERSION RELATION 

As given in (14),  6 is either real or imaginary for all real k    and 

k   .    First,  it is verified that no solutions of (1 8) exist for which S is imagi- 

nary.    If 8 is imaginary, i.e., 8 =±j|6|   , then (18) becomes 

+ 4 18   d a ± I 3 
aTTs (19) 

The left-hand side is leas (greater) than unity while the right-hand side is 

greater (less) than unity.    This contradiction verifies the assertion.    When 

S is real, however,  both term« ia (18) have magnitude unity so that a solution 

is possible.    In order to find the range of frequencies for which (18) ha3 

solutions,  based on the restriction that 8 be real, plot for all X > 0 those 

regions in the k   -k    plane where 6  is real and the region where Ct is real 

(see Fig. 2).    From Fig. 2 it is seen that the regions where 8   is real and 

the region where 0, is real overlap only when X > 1.    Hence the possibility 

that surface waves can propagate exists only for X > 1.    In passing, observe 

that (18) remains invariant under the substitution of -B for 8 .    Thus it is 

sufficient to consider only positive values of 8.    Since the slab configuration 

has mirror symmetry in the plane z = 0, the surface wave fields will corres- 

pond to either an open-circuit or a short-circuit bisection of the slab (even 

and odd solutions in z).    The dispersion relation given in (18) can be split in- 

to two independent dispersion relations,  one giving the open-circuit bisection 

solutions and the other the short-circuit bisection solutions.    These are 

j28d jtt + 8 
ja   -8 (20) 

where the plus and minus signs correspond to short-circuit and open-circuit 

bisections, respectively. Using the plus sign for the short-circuit bisection 

case, the dispersion relation may be put in the form 

a   = - 0 cot 8 d (21) 

whereas if the minus sign is used, the dispersion relation for the open-circuit 
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bisection case can bewritten 

a = B tan 8d (22) 

with a and 6 as given in (11) and (14). 

A graphical method for solving equations (2 1) and (22) is described 

below.    In order to show that equations (21) and (22) are satisfied for real 

values of k   ,  k    and i < ■   ,  i. e. ,  X > 1, the plots of (2 1) and (22) in the 
x      y p 

3 -a   plane are considered.    Since Ot and S have been taken to be positive, 
2 2 2       2 

only the first quadrant is of interest.    Adding a    to 6    gives 1+9    = 
2       2 2 2 

X(k    -k   ) when (11) and (1 4) are used.    Because k     >k     for surface waves , 
y       o y o 

as can be seen from Fig.  2, the plot of this relation in the 8 -tt plane is a 
i 2 2~" circle whose radius is ,/X(k    -k    ).    The intersection of this circle with 

y      0 
the plot of (21) or (22) gives a and 8 from which k    can be found using 

k    = ± 
x 

/X[(x.l)a2.B2]    . (23) 

But k    must be real so that in the first quadrant only those intersections for 
X 1 

which a  >   ———— 8 give values of tt and B which correspond to an actual 
- yirr 2      2 

surface wave.    Since a and B depend only on k     and k     and   not merely on 
y x 

k    or k   ,  constant uu   surface wave disnersion curves will have mirror sym- 
y x 

metry about the k    and k    axes in the k   -k    plane.    Thus,  knowing the re- 
x y x     y 

lation between k    and k    for k   ,  k    > 0 is sufficient to determine the entire 
x y x      y — 

dispersion curve. 

Figure 3 has been sketched to show the method outlines above for 

finding that k    which satisfies (2 1) when k    and k    are given.    Each branch 6 x y o 6 

of -B cot ß d depicted in Fig.   3 corresponds to a particular short-circuit 

bisection surface wave mode.    Since there are an infinite number of such 

branches,  there will be an infinite number of short-circuit bisection sur- 
2 2 2       2 

face wave modes when X(k     - k    ) -• 00.    For a finite value of X(k    - k    ) 
y        o y       o 

only a finite number of surface wave modes can propagate.    For values of 

Ol and B in the shaded region of Fig.   3,  k   , as found from 
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a REAL OUTSIDE 

CIRCLE   K* + lyk* 

£■0 FOR X>l 

ß»0 FOR X<l 

^■0 FOR X>l 

Fig. IV-2     Regions of real 3 and a in the k  -k   plane 
x    y r 
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yl     r 2 2 
— [(X - 1) l    - 3    ]   ,  is imaginary.    Thus it is seen that for fixed k 

2        2 0 

each mode has a minimum value of k    > k    at which k    = 0 and beluw which 
y        o x   2 

no real solutions for k    exist.    The minimum value of k    for which a particu- 
x y 

lar surface wave mode can exist is fourd from, the condition that the circle 
_1  2       2 2       2 1 

a   + 8    = X(k    - k   ), the line a =  8 and that branch of a = - 3 cot 3 d 
1 y     o 

2 
corresponding to the mode in question all intersect at a common point.    As k r 

increases from its minimum value,  k    and the cori esponding solutions for k 
y x 

for each branch of -8 cot8d trace out the surface wave dispersion curves in 

the k   - k    plane of the short-circuit bisection mode s x       y 

In a similar fashion,   Fig.  4 depicts the method for finding that k 

which satisfies (22) when k    and k    are given.   .From this figure and Fig.   3, 
y o 

it is seen that the lowest surface wave mode on the slab,   i   e. ,  the one with 

the smallest value of   6  ,  is that open-circuit bisection mode corresponding 

to the branch of 3 tan 8d starting at 8 = 0     As in the case of the short-circuit 

bisection modes, k    corresponding to values of I and a in the shaded region of 
x 

Fig.  4 is imaginary     Thus for each of the higher open-circuit bisection modes 
2       2 

there will be a minimum value of k    > k    at which k   = 0 and below which no 
y       o x 

real solution for k    exists.    For the lowest open-circuit bisection mode 
d X 

[TT<8 tan 3 d)].        = 0 so that a part of the branch of 8 tan 3d starting at 3=0 
dB 8=0 

lies in the shaded region of Fig    4     Hence there will also be a minimum value 
2        2 

of k    > k    for the lowest surface wave mode below wl ich no real solution for 
y     o 2 

k    exists.    As in the short-circuit bisection case,  when k    increases from its x y 
minimum value for a particular mode and for a fixed k   ,  k    and the correspond- 

0      y 
ing value of k    trace out the dispersion curve of that open-circuit bisection 

x 
mode. 

In what follows,   the basic properties of the surface wave dispersion 

curves will be derived.    For any one mode,  these properties lead to the form 

of the dispersion curves shown in Fig.   5,  which has been drawn for two 

different frequencies  v    >   u   .    In order to find the shape of the dispersion 

curves of any one mode and for fixed ■ ,    consider the corresponding branch 

of -8 cot 8 d in Fig.   3orof8tan8din Fig. 4.    As pointed out previously,  the 
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Fig. IV-3     Construction for finding solutions of the surface wave 
dispersion relation for the short-circuit bisection case 

Fig. IV-4     Construction for finding solutions of the surface wave 
dispersion relation for the open-circuit bisection case 
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dispersion curves are symmetric abuut the k    ai,d k    axes so that one 
' x y 

need find only that portion of the curves in the first quadrant of Fig.   5. 

Also, as was previously discussed,  in the first quadrant of Fig    5,  k 

takes on its minimum value,  which is greater than k    at k   = 0,  i. e. ,  where 0 ox 
the disoersion curve crosses the k    axis      It will first be shown that in the 

y 
first quadrant,  k    is a single-valued,  monotonically increasing function of 

k   .    These two facts indicate that the inverse function,  k   =k   (k   ),   is 
y y    y   x 

single-valued and monotonically increasing in the first quadrant as is de- 

picted in Fig. 5. Other fundamental properties of that portion of the dis- 

persion curve in the first quadrant of Fig.   5 that will be established are: 

1)  dk  /dk   = 0 at k   =0;     2) asymptotically as k    ■••,   k    . k   / JX - I    and 
y       x x y y        x   

the dispersion curve everywhere lies above the asymptote k  = k   / «/X - 1 ; 
y      x 

3)   the value of k    at k    =0, as well as the slope of the asymptote,   in- 
y x 

crease with x.    One question that has not yet been answered analytically is 

whether the surface wave dispersion curves have inflection points 

To see that in the first quadrant of Fig.   5,  k    is a single-valued 

function of k   ,  observe that for S > 0, a > 0 each branch of -9 cot 9 d in 
y 2        2 

Fig.   3 and each branch of 9 tan 9d in Fig.  4 intersects the circle 0.    + 9    = 
2       2 

X(k    - k  ) only once.    Thus for a given m    and for each value of k    and x 
y        o 7 6 p y 

there will be only one set of values (9, a ) for each mode and hence from (23) 

only one value of k    > 0 for each mode.    Therefore,  in the first quadrant 
x 

of Fig.   5,  k    is a single-valued function of k   .    That k    is a monotonically 

increasing function of k    can be inferred from the sign of dk  /dk   .    Since 
y x       y 

k    and k    satisfy the surface wave dispersion relation D (k   , x ) = 0, 
X y SD

S   /aD
a      fl"t 

dk  /dk    for fixed x is given by dk  /dk    = - —-=- /-—— ,    Using D    as given 
xy 0 7xy^k/5k 0sB 

y x 
in the left-hand side of (18), with a and 9 defined in (11) and (14),  it is 

found that 

dk           k     ad(X-l) + k2/(k2-k2) 
 x__       _£  x       y      o 
dk       "  k ad +  1 

y        x 

(24) 

From (24) it is seen that in the first quadrant of Fig    5,  dk  /dk    > 0 and 
x       y 

hence,  k (k   ) is a monotonically increasing function.    Furthermore,  (24) x    y 
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W8>Cü( 

/DIRECTION OF\ 
\POWER FLOW/ 

ASYMPTOTES 

Flg. rV-5    Dispersion curves for a typical surface 
as a parameter 

wave mode with v 



94 

■howi that dk  /dk   = 0 at k    = 0 ai ii depicted in Fig.   5. 
y      x x 

2       2 
As k   - » , the value of B at the Intersection of the circle a   + 8    = 

2      2      y 

X(k   -k  ) and any one branch of -ScotSd in Fig.   3 or any one branch of 

Stan 8d in Fig.  4 approaches a constant.    Thus, since k   has been assumed 

constant, a    ~ Xk    as k   - »  and hence,  from (23), k    in the first quadrant 
y Y      x 

of Fig.   5 is asymptotically given by k    _ k    Jx - 1   or conversely 

k    „, k   / JX - I .    That the dispersion curve lies above the asymptote line 
y       x/ ^  

k    = k   / J X -I,  as shown in the first quadrant of Fig.   5,   can be deduced 
y       x 

from the definition of 6 given in (12).    Since P is real for the surface waves 
2      2        2        2 

and X>1,  (X-l)k   -k    =B+k(X-l)>0 and therefore in the first 
y      x o 

quadrant k    > k   Ij X - 1 ,  which proves that the dispersion curve lies above 
y      ■ 

the asymptote line.    When ■ increases but remains below i   ,  X decreases 

to unity and hence the slope of the asymptote,  \IJX - 1 ,  increases as is de- 

picted in Fig.   5.    Furthermore,  as ■ increases th« slope of the line 

a = ö Ijx - 1 in Fig.  3 and Fig. 4 increases.    Hence the values of 6 and a 

at k   = 0 as determined from the intersection of the line a = B / J X -I   with 
x 

any branch of -B cot B d in Fig.  3 or of B tan B d in Fig. 4,  must increase. 
12        2 

Because k    increases with x and X decreases, the quantity — (a    + 6   ) + 
2       2° 

k    = k   must increase and thus the magnitude of k   at k   =0 increases with 
o       y " y        x 

uu.    The above-described variation with uu of k   at k   = 0 is depicted in 
y       x 

Fig.  5. 

Thus the fundamental properties previously stated for the surface 

wave dispersion curves of any one mode are seen to hold.    These proper- 

ties indicate that the dispersion curves will have the form depicted in 

Fig.  5,  with the possible exception of inflection points,  for two different 

frequencies.    From Fig.  3 and Fig.  4 it can also be seen that surface 

waves exist for all UJ   in the range 0 < u < uj        Lastly,  since in the first 
P 

quadrant of Fig.   5,  dk /dk    >  0,  which follows from (24),  and since the 

dispersion curve for UJ = ID _ lies above that for UJ = uu. "^ U) ?,  the x component 

of v     ju must everywhere be negative.    That the dispersion curve for u) = m 
_t 

lies above that for iu = (U, < uu., follows from the fact that at k   =0 the ou =U), 
12 x 1 

curve lies above the ■ = uu7 curve and the two curves never cross since 
■ 
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f.    IU , which is given in (42),  is never infinite.    The observation that 
_t 

x     »V.     u > 0 is confirmed by the analytic expression for '^,     v  given in 
"■ O K A K |. 

(42) and indicates that the surface waves are of the backward wave type 

with respect to the x direction. 
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D. GROUP VELOCITY AND ENERGY TRANSPORT VELOCITY 

Having established the basic properties of the dispersion relation 

of the surface waves on a uniaxial plasma slab,  the equality of group velo- 

city and energy transport velocity for these surface waves will be verified 

by direct calculation.    As derived in Chapter III,  this equality states that 

00 /     » 

\t* ■ J^d7 J wdz (25) 

where s represents the real part of the complex Poynting vector E x H    and 

w the time average stored energy density.    To this end,  the relative field 

amplitudes are first calculated.    Since one of the coefficients A   ,  A-,   B 

and B. is arbitrary,for simplicity let 

A. = -A   (S - jtt) e 
i o 

jSd 

where A    is arbitrary.    Then from (17) it is found that 
o 

A    = -A   (8 + jtt) e 
2 o J 

jSd 

(26) 

(27) 

while from (16-a) 

B. = -28 A    e 
1 o 

ad 
(28) 

Uiing the dispersion relation in the form given in (18), which is valid for 

both open-circuit and short-circuit bisection modes,  it follows that 

B   =.2BA    s_ü5_e-J2edead 
3 o 8 - ja (29) 

With these expressions in equations (12),  (13) and (15) for the fields in 

the three regions,  s in Region 1 is found to be 

..i»    |2a2 - 2a (z - d) -      ,   ,,2    ,2. ,    .2    ,2.^ 
8=4A|     SuuCe        v Lxk(k-k) + yk(a+k)J 

—        '     o' o —o   x    o      y      -«-o   y' x 

(30) 

while in Region 3 it is 
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2.2 2a(z + d) 
e 

o o 
2    . 2 2    . 2 

s = 4|A     "B'JUC     e"~x"    ~'Cx   k   (k   -k   ) + y   k (a  + k   )]        (31) 
—o   x    o      y       -^-o   y x 

and finally in Region 2 it is 

s = |A   I2 i- C   (a2 + 82) /2[x   k   (k2 - k2 ) + y    k   (82 + k2 ) ]   + 
— o o I—oxoy-*-oy x 

rl^g    j28,2.d)+ Bja    .j2B(z.d)-| r    M1[».k«,t     k  (k
2-8

2,l} 
LS - ja s +ja J  L-o  xx o     y     ^o  y    y        J* 

(32) 

The quantity S =      £dz is now calculated to be 

S=4|A   |2x'e   {a2 + 92)(-x   k(k2-k2)[i   +d] 
— o o I—oxy       oft 

+ y    k   [i   k2 + d(X-l)(k    - k   )]}     . 
■SD    y a     x y       o      J 

2      , 2 
y 

(33) 

In order to determine the stored energy, observe that in the plasma 

slab 

3 UU € 

=  e 
o 

9 (D e 

=  e 
o 3 B 

- 

1 0 0 

0     1+X     o 

0 0 1 

(34) 

Thus in Region 2, the time averaged stored energy density, which is given 

by(14).(15) 

w  -j 
5   UU  € 

E +u      H — o   — (35) 

is found to be 

w >iU  l2^   (a2+B2){4{k2-k2)(Xk2-k2) 
2lo o ly        o y        o 

■^^^*b$.'m'*i]y-u*W'****i-<>]}- 
(36) 

 .  
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Outside the slab, the time averaged stored energy density has the form 

w^fc    lE|2+u    |H|2 1 (37) 

so that in Region 1 

w = 2|A  |2e   ^rdc^^Xk2*:.2)*^-^)2].-21'1-'" (38) 
o      oLo     yx y     oj 

while in Region 3 

oi.    |2      a2r,y2     , 2 v #, 2        2t     ,,2     , 2 .2 -)       2a\z + d) .,., w = 2  A   !e9(k+kk+a)+k-k e . 39) 
o      oLo      yx y      oj 

Calculating   W =        w d z ,  it is found that 

_• 

i      i2 2       2f       2      2 2      2       lr22        2      22-n 
W = 4 A        e  (*    + 8£)(d(k   -k  )(Xk   -k  ) + t [k    k    +(k   -k   )    |^ . 

o        o lyoyottLxyyoJJ 

(40) 

In deriving the above power and energy formulas,   extensive use has been 

made of the dispersion relation given in (18) and the formulas (11) and (14) 

for 1 and S .    Using the above expressions for S and W, the energy transport 

velocity is seen to be 

1       -iSok,'ky-ko";td'tiok
yL;l'«td'x-"'ky-ko'] 

w "     d^-kW-kVincVW,2! 
y      o yo       OlLxyy       o      j 

In order to compute the group velocity 7     n,  the formula 7,   Uü   = 
3D -t -t 

■ 
• f,      D   /  -r— from implicit function theory will be used where the function 

kt     s       3uu 
D (k   , nj ) is the left-hand side of (1 8).    It is found that s —t 
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-x    k    (-   + d) + y    k   rd(X 
—o   x a *o   TL 

1) + 

k2x 
x 

V,     ■ ■ i 
,2     02 % a(a   + B   ) ] 

d(Xk2-k2) + i (k2-k2) + 
y      o        a      y      o 

k2k2 

x  jr 
2        2 

a(k   - k   ) 
y        o 

(42) 

If both the numerator and denominator of the above expression are multiplied 
2      2 2        2 2        2    _ 

by (k   - k   ) and it is recognized that X(k    - k   ) = Ot    +8   ,7,    ■ will be seen 7      y      o ■ y        o k 
to be identical with S/W,  as predicted in Chapter III. 

The example worked out above also illustrated that fact that,  in 

general, the direction of s as well as its magnitude can vary with z.    This 

can be seen from equation (32) for s in Region 2 if it is recognized that the 

vectors [x   k   (k2 - k?) + y    k   (82 + k2 )]    and [x   k   (k2 - k2 ) + y   k (k2 - 82)] 
—oxoy-*-oy x —oxoy        J-o   y    X 

are parallel only for k   =0.    Since the coefficient of the first vector is inde» 
x 

pendent of z while the coefficient of the second vector depends on z,  the direc- 

tion of the vector sum, which gives s,  will depend on z for all surface wavct 

for which k   ^ 0. 
x 
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Chapter V 

EVALUATION AND INTERPRETATION OF THE SURFACE WAVE 
CONTRIBUTIONS TO THE FAR FIELDS 

A.     INTRODUCTION 

In this chapter,  the surface wave contributions to the far fields radi- 

ated by a point source in the presence of a planar interface between two aniso- 

tropic,  lossless media are evaluated.    The surface wave fields are found from 

the asymptotic evaluation of the rigorous Fourier integral expressions for the 

fields given in Chapter I.    Using the group velocity-energy flow relation de- 

rived in Chapter III for surface waves in plane-stratified,  anisotropic,  loss- 

less media,  the surface wave contributions to the point soiree fields are in- 

terpreted as arising from surface wave rays.    These rays are the two- 

dimensional trajectories of total energy flow of the surfa-e wave propagating 

along the interface.    The surface wave fields are then cast into a ray-optical 

form containing such physically significant quantities as ray length and ray- 

refractive index.    The asymptotic evaluation of the surface wave contributions 

and their ray-optical interpretation are given in Section B 

As an illustration of the effects of anisotropy on the surface waves 

radiated by a point source, a particular problem is considered in Section C 

The configuration studied consists of a homogeneous,  gyrotropic,  cold elec- 

tron plasma above a perfectly conducting plane.    The gryrotropic anisotropy 

is assumed to be produced by a static magnetic field parallel to the conductor. 

The source is taken as a small slot in the conductor in which the electric 

field is specified.    Strong angular dependence is found for both the surface 

wave dispersion curve and the surface wave radiation pattern,  which are 

evaluated numerically for a particular choice of plasma parameters.    The 

direct ray radiation pattern is also evaluated.    Note that since the source is 

on the interface,  all stationary point contributions will correspond to rays 

proceeding from the source to the observation point.    The presence of the 

conductor will only influence the ray field amplitudes but not the ray struc- 

ture. 
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B.     SURFACE WAVE CONTRIBUTIONS TO THE FAR FIELDS 

The surface wave contributions to the far fields radiated by the 

point source of Chapter I arise from the residues at certain poles,  called 

surface wave poles, in the n integration for the scattered field integrals 

(II-4).    The integration over ?   of the residues by the method of stationary 

phase yields the surface wave contributions.    The surface wave poles are 

those points on the real fj axis at which the common denominator d(?, r| ), 

as defined in (1-47),  of the scattering coefficients vanishes and the Fourier 

transform of the total scattered field  E«, as found by substituting (II-4) in- 

to (11-3) and interchanging the order of summation and integration,  is   singu- 

lar.      Note that d(f, f\ ) will vanish at branch points of the H'S at which H   is 

complex or imaginary.    While the integrands of the individual integral« in 

(II-4) will be singular at such points,   no net contribution to Er will come 

from these points unless the Fourier transform of Er is itself singular. 

In view of the above comments,  the surface wave pole locus is de- 

fined as the locus of points in the real (', n) plane at which d(?, r) ) = 0 and 
t 

the Fourier transform of Ep  is singular.    In order to interpret the surface 

wave pole contributions in terms of surface waves,  it is first necessary to 

argue that the surface wave pole locus is the surface wave dispersion curve 

in the sense defined in Chapter III. for the planar interface configuration. 

In other words,  it is necessary to show that for {?, T) ) on the surface wave 

pole locus,  a solution of the source-free Maxwell equations exists having 
— jk (?x 4 TIV) 

transverse dependence e      0    " and such that the transverse electric 

and magnetic fields are continuous across the interface and the fields decay 

The presence of particular subscripts in the definition (1-47) for d(?, r| ) im- 
plies that only particular branches of the multivalued functions K(£ , ri ) for 
each media be used in evaluating d(? , r)).    However,  in performing the 
steepest descent integration of (II-4) over f| , the complex «1 plane must be 
viewed as a sixteen-sheeted Riemann surface with dCf, 1\ ) defined on all 

sheets.    Thus,  while d(?, n ) is defined along the original integration 
path,  which lies on one of the Riemann sheets,  such that at its real axis 
zeros Re(-JHmz)  <   0,  d(?, r] ) may have real axis zeros on other sheets 
at which Re(-jKmz) >  0.    Such zeros correspond to improper surface waves 
that grow exponentially away from the interface and are not intercepted 
during the deformation of the integration path for |y| >> |z|,   jz1!   , as 
was assumed in Appendix B. 
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away from the interface.    The fact that d(? , ri) = 0 on the surface wave 

pole locus implies that a non-trivial solution of (1-42) for the b    's and 
m 

c    's exists when ar«   = a^  = 0.    Thus, for S and Tl   on the surface wave 
m 12 

pole locus, there exist solutions of the source-free Maxwell equations 

having transverse dependence e       o» - /    ancj suc}: ^hat the transverse 

electric and magnetic fields are continuous across tht  interface. 

That the fields decay away from the interface can be shown from 

the continuity condition 

1 C       Y   (H       )  =    V     b      V   (H       ). (1) 
m    t     m        /,_     m    t    m 

3,4 12 

i.e. ,  from (1-42) for ar*   = a^   =0.    Forming the inner product,  with respect 

to r   ,  of each side of (1) with itself and using the orthogonality condition 

(1-28) gives 

|c    |2 M     6 *  =7    |b    |2 M     6 *   . (2) 
Z- m1        m     K       H    *     /.     '   m'        m    K    ,K ' ^^ m*  m   r^t mm 3, 4 1,2 

Since   fi * = 0 unless K       is real,  the sums in (2) reduce to the sum» 
K     , K m 

m     m 
over the upgoing propagating modes of the e     medium and the downgoing 

propagating modes of the c. media.    But for H      real by direct expansion of 

M     of (1-30), it can be shown that M      =2ReCz   -(A       x J/       )].    Thus, 
m m —o      ^tm     — tm 

for P14   or K J   real,  M^ or M-r   is positive while for K ♦-  or K^ real,  Mt-   or 
34 34_? 12 1 

Mir   is negative.    Because    c    |   ,   |b    1    > 0, the left-hand side of (2) is 
c m m      — 

greater than or equal to zero while the right-hand side is less than or equal 

to zero.    Hence, the equality in (2) holds only when both sides are zero, 

which implies that those c    's and b    's corresponding to real H     '• must be r mm ' m 
zero on the surface wave pole locus. 

Thus,  when a solution of the homogeneous equations (1) exists, the 

only non-zero c    's and b    's are those corresponding to complex or imaginary 

H    .    Since the c    's and b    's correspondine to real K     'S are zero on the 
m mm m 

surface wave pole locus, those F       's having the same values of m wi)l be 
mn 

finite on the surface wave pole locus so that no residue term will appear in 
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the T) integration of the irtegrands in (II-4) at which N      is real.     In other 
m 

words,  the surface waves will cortain only those modes of the e. and £ . 

media that decay away from the interface - see previous footnote.    This 

completes the proof that the surface wave pole locus,   as defined above,   is 

the surface wave dispersion curve of the planar interface configuration. 

In the foregoing discussion it was shown that on those portions of 

the surface wave pole locus at which a particular scattered wave number 

K      is  real,  the T       's having the same m must be finite.    However the dis- 
m mr. 

cussion did not lead to the conclusion that if an incident wave number H 
n 

were real on a portion of the surface wave pole locus,  the T       's having r u mn s 

the same n must be finite there.     Thus,  if two wave numbers of the C 
1 

media are real and two are complex or imaginary,  and hence the conjugate 

of each other,  the upgoing propagating plane wave excited by the source may 

excite a surface   wave whose fields in the €    media are entirely those of the 

one evanascent downgoing plane wave. 

1.     Integration of the Residue Contributions Over  g 

Writing the scattering coefficients of (1-46) and (1-50) as 

r       (ff.^) = Y       (?.ri)/d(?.r1) 
mn mn (3) 

and recalling the form of F(? , X\) when the generic integral (II-5) represent« 

the scattered field integrals (II-4),  f ( ? , TI ) defined in (B-8) of Appendix B 

is seen to be f (? , t) ) =  <5      y       A   •    Furthermore,   P(? , n ) for the integrals 
— — m   mn    n 

of (II-4) is P(,? , r] ) = fx + ny + H     Z - *    Z1
.    Using these forms for f (' , TI ) 

m n — 
and P{9 , r] ) in (B-9) gives the surface wave pole contributions to the t\   inte- 

gration in (II-4).    Finally,  writing the surface wave contribution (I        )_     . 
— mn  S.W. 

to I of (II-4)as the integral over ' of the residues,   and substituting this 
— mn 

expression into (II-3) gives the surface wave contribution to Ep  .    Since the 

pole location T)   (? ) in the t\ integration is the same for all ai and n,   and 
P 

since the Y       's corresponding to a real x      are zero anyway,  the summation mn r o j^ 

over the poles may be taken outside the summation over m and n.    Thus,  the 

surface wave contribution to Er is 



104 

„       _        (5    V       A       -jk    H    z-x   z'i   -jk [fx+n    v)y] 

S.W. L. J    L. a2[: .     ) * 
p -^  m, n 1 (5} 

P 

(4) 

where the order of summation over m and n and integration over \ have al- 

so been interchanged.    In (4),  n = 1 ,  2   and m = 3,  4   for z > 0,   while for 
«-    «- 

z < 0,  m = 1 ,  2 . 

The integration over \ indicated in (4) is now to be carried out 

asymptotically by the method of stationary phase.    In performing this evalua- 

x   + y     is much greater than  |z|  or  Iz'l    - 

see Section 3 of Appendix B.    Mathematically,  the importance of this assumo- 

tion is that the large parameter in the asymptotic evaluation can be taken as 

./x   + y   .    When /x   + y    is used as the large parameter in (4),  the term 
• lie    / K Z ~ K     Z ' 1 

e      0    m n       for fixed z and z' will be slowly varying compared to 
• ik   f?x + r   f?)vl 
e    0 P " and may thus be considered as an amplitude function. 

Thus,  for Vx2 + yZ > >  | z| ,   Iz'l  the stationary points of (4) will be the same 

for all m and n and will be the solutions of 

x + y Ä- nJ?) = o    . (5) U;, P 

The ray-optical significance of the assumption v'x   +y^<<  Iz^jz'l 

is that for observation points satisfying it,  the fields associated with the 

pole contributions may be viewed as arising from propagating modal sur- 

face waves.    If the foregoing assumption is not made,  the stationary points 

are those of 'x + r)   y -f t     z -x.   z1.    In this case the stationary points are, p m n 
in general,  different for each m and n and are complex.    Furthermore,  the 

ray interpretation would be in terms of complex rays,  as discussed by 
(35) 

Keller and Karl fo^ the pole contributions in Isotropie media.    Finally, 

since the ray paths would be different,  in general,  for each m and n, the 

modal character of the pole contribution« would be lost. 
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If e is a real solution of (5) and 1 = ^ (" ) is the correspondino 

value of r) on the surface wave dispersion curve, then performing the sta- 

tionary phase evaluation of (4) under the assumption vXZ + y^ > ^ |z| , 
f—^z—        ■■ 

U'l    gives to 0(l/v/xZ+ y2 ) 

(Er) 
S.W. 

I*    ^3/2 

- J sgny 

TT 
d2. 

e d- r*    - A        
J  o    m       n 

— 5    Y       A  e 
u    — m   mn   n ^d^.royiyd^/d^l 

m, n 
{%   \r\   ) 

P     P 

(6) 

In (6),  the summation over p is taken over all points (^   , r|   ) satisfying (5) 
P      D 

on those portions of the surface wave dispersion curve for which the y com- 

ponent of the real part of the total surface wave Poynting vector has the 

same sign as the observation coordinate y - see text before (B-8) in Appen- 

dix B.    Expression (6) for (Er) is not valid for "    near the branch 
—i-   S.W. p 

points of the possibly multivalued function r]- r\   (?),  in which case two poles 
2   V   2 

are close together in the  n integration and d T)   Id%    - •.   It will be   seen in 

the next section that this occurs when jy] < <  jx|   .    However,  this singu- 

larity in (6) is introduced by the choice of the (x, y) coordinates and will rot 

be present when (6) is re-expressed in ray-optical terms.    The actual sin- 

gularities of the surface wave contribution to the far fields are considered 

in the next section. 

2.      Ray-Optical Interpretation of the Surface Wave Contribution 

In order to cast the surface wave contribution to E-   into ray-optical 

form,  first consider the ray interpretation of the stationary phase condition 

(5).    As demonstrated in Chapter III,  a modal surface wave propagating with 

transverse wave numbers { and n will carry energy in the direction of the 

normal to the dispersion curve at the point ({»1|  ).    Let the unit normal to 

the dispersion curve having the same sense as the energy flow of the corres- 

ponding modal surface wave be V    .    The normal v     can be written as 
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v 
— 8 

di 

*<5o d^ 
(7) 

where the minus (plus) sign applies for mo aal surface waves carrying 

energy in the plus (minus) y direction.    Using (7), it is easily verified that 

the stationary phase condition (5) is equivalent to v     x £ = 0 where £ = 

x   x + v   y is the transverse displacement of the observation ooint from the 

source.    In addition, the radiation condition, as applied in the residue 

evaluation given in Section 3 of Appendix B,  implies that v   . o >0.    Thus, 

surface wave contributions to Ep come from those points on the surface 

wave dispersion curve at which V     is parallel to and has tae same sense 
— 8 

as the transverse displacement p. 

In other words, while the source radiates a continuum of modal sur- 

face waves corresponding to all points on the surface wave dlsoersion curve, 

only those carrying energy in the direction of the transverse displacement 

p will contribute to the fields at the observation point.    This interpretation 

is independent of z and z' so long as J■xr + y^ > >    z z'l   .    That the ray 

interpretation is independent of z and z' is to be expected since the surface 

wave energy flow is the integral over z of the local Poynting vector. 

Effectively, the radiated surface wave fields may be viewed as arising from 

two-dimensional surface wave rays that are trajectories of energy flow. 

In this view, the z and ■' dependence of the surface wave fields merely 

describe the local field strength and excitation. 

With the above ray interpretation of the stationary phase condition 

(5), the various quantities appearing in (6) can be cast into ray-optical 

form.    To this end, the curvature C    of the surface wave dispersion curve 

is written as 

 — r\  (? ) cos   * 
d?2     P 

(8) 

where cos * 

(8) 

V    .y.    At(?,Ti), y = D cos * with p = | p    so that from 
— S    *'0 p       p — 
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d2. 
y —r  - o C   I cos   I .2 s (9) 

dC 

and hence 

d2n 
sgn(y ) = sgn Ca    . (10) 

d§ 

Note that C    is positive if the center of curvature is on the same side of 
s        r 

the dispersion curve V     and is negative otherwise. 
^^ s 

Since the dispersion curve is the solution oi d(', f] ) ■  0,  the gradient 

in the (?, il) plane of d(?, 11 evaluated at points on the dispersion curve,  is 

parallel to v   .    Thus, on the dispersion curve 

— 8 —O      1       •'-O     C 3 

/ ?. 2 
where Q    = ± J (d.)    + (d  )    ,   the sign being chosen so that expression (11) 

for V     has the correct sense.    From (11) and th« 
— 8 

seen that on the surface wave dispersion curve, 

for V     has the correct sense.    From (11) and the definition of cos ♦,  it is 
— 8 

d, (? , Ti ) = Q    cos $ 
C 8 

(12) 

Defining the surface wave ray-refractive index N   as 
0 8 

N   H v     • k 
S        —8        - I 

(13) 

where k    = x    K     + y   T)   , the phase term {   x + r]   y in (6) is equal to N p 
— t     —o    p     •*-o   p p p • 

Finally,  recognizing that sgny = sgn(cos i) and using (9) and (12), 

sen &RJ_ 

d2^,r])J\yd2r)  /E,2\ 

P     P 

1 ■ 

Q8yp" Csl 

(14) 

P      P 
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Er 

With the help of (1 3) and (14), the surface wave contribution (6) to .. 

can be rewritten in the from 

(Er) -r 

(frT) 

S.W. 

3/2 u 
-jk   N   D   -J-r 9gn C 

OS 4 8 
e e V 

v^T     ^ '     Q /öTc o       p s       '    a m, n 

AY       A e »m   m n   n 

• jk («    z - K   z'), 
o    m n      1 

P    P 

(15) 

wheren-1,2   andm = 3,4   forz>0,  while fcrz<0,  iTi = i,2.    In (15), 

the summation over m is required by the fact that the fields of the surface 

waves that can propagate on the interface are,  in general a suoerposition 

of the evanescent or inhomogeneous plane wave fields of the C . and € 

media.    The summation over n indicates that the surface waves are excited, 

in general,  by both modal fields incident on the interface.    Finally,  the 

summation over the points ('   , "l   ) indicates that a surface wave contribution 
P     P 

to E- arises from each point on the surface wave dispersion curve,  which 

may have several branches,  at which v     is parallel to and has the same 
— s 

sense as o. 

The stationary phase condition (5) implies quadratic phase change 

when the observation point moves parallel to the z = 0 olane and perpendi- 

cular to k   .    Thus, for o >> |z|,   Iz'i    the surface wave fields may be 

viewed as arising from surface wave rays whose fields are locally those of 

modal surfaces waves.    This view is supported by the 1/^D   dependence of 

the fields in (15),  which implies conserviition of modal surface wave energy 

in a tube of surface wave rays,  i.e. ,  in a wedge region of infinite extent 

along z.    As in the case of the ordinary rays of geometrical optics,  the 

above ray interpretation of the surface wave fields uhould prove useful in 

evaluating the surface wave contribution in problems not amenable to 

rigorous analysis. 

For p > > |z| ,   |z | , the direct and scattered ray fields found in 
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Charier II vary as 1/p.    Thus,  for observation and source points near the 

interface the surface wave fields will form the dominant contribution to the 

field. 

Expression (1 5) for the surface wave contribution is not valid for 

(?   , r|   ) near an inflection point of the surface wave dispersion curve.    At 
P      P 

such points, the curvature C   « 0 and the corresponding observation points 
s 

lie near a shadow boundary of the surface wave fields.    Also,  for observa- 

tion points such that ('   , r]   ) is near a cusp or crossing of the dispersion 
P     P 

curve with itself, (15) may no longer be valid since C   Q   «« 0.    For (?   , T)   ) 
s    s P     P 

approaching a branch curve of K      at which R      is real, (15) is no longer 
rn m 

valid.    This is because d(', T1 ) explicitly depends on the K     'S of (15) and 
m 

for (?   ,r]   ) approaching a branch curve of x      at which it is real, d,(?, r\) 
p     p m 1 

and d  (?, ^l) in Q    will approach infinity.    However,  the nature of the sin- 
c. S 

gularity in the surface wave fields given in (15) cannot be predicted in 

such a case since C    may approach zero.    Similarly,  (15) may not be valid 
s 

for {-_    pfl  } approaching a branch curve of H     at which it    is real since 
P     P ■ 

d^?, ri ) and d (§, fl ) will approach infinity.    In this case, however, A (?,r| ) 
I j n 

also approaches infinity -- see (1-54) and footnote on page 32 of Chapter II - 

so that the nature of the singularity cannot be predicted.    Also, as | ?   | , 
P 

Iri      - « along an open branch of the surface wave dispersion curve,  C    will 
P ■ 

approach zero.    But since Q    may approach infinity in this case, the nature 
s 

of the singularity in (15) cannot be predicted.    For those cases where the 

nature of the singularity of '15) cannot be predicted,  in general, the be- 

havior of the first-order asymptotic expression for the surface wave fields 

can be determined an any specific problem. 

Unlike surface waves excited by a line source or by a point source 

in Isotropie m^dia, the possible variation of the quantities in (15),  when 

either the e    or e     media is anisotropic, indicate that the point source surface 

wave field" may have a marked angular dependence aside from any asym- 

metry due to excitation.    This dependence can include singularities such as 

shadow boundaries.    In the next section a specific configuration is con- 

sidered in which the surface wave radiation pattern exhibits such an angular 

dependence. 
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C      Surface Waves in a Gyrotropic Plasma Above a Perfect Conductor 

As an illustration of the foregoing results for the surface wave cortri- 

butions to the far fields radiated by a point source,  these results will be 

applied to a specific configuration.    This configuration consists of a gyro- 

tropic, homogeneous,  cold,  electroti plasma filling the half-space above 

a perfectly conducting plane.    The static magnetic field that causes the 

plasma to be gyrotropic is assumed to be parallel to the conducting plane 

Excitation of the R.  F.  fields is by an electric field imoressed in a small 

slot cut in the conducting plane 

This configuration has beer, chosen because it is known to support 

surface waves      Furthermore,  the analysis of the configuration for the sur- 

face wave and direct ray fields is relatively simple for appropriate ranges 

of plasma and cyclotron frequencies.    For these ranges of cyclotron and 

plasma frequencies,  no lateral rays will be present.    Note that since the 

source ii on the plasma-conductor interface, all rays associated with the 

stationary point contributions will proceed directly from the source to the 

observation point. 

In studying propagation transverse to the static magnetic field in this 

configuration,  Ishimaru and Seshadri found that a surface wave with 

no phase variation along the static magnetic field B    can propagate in the 
—0 (38) 

direction z   xB    but not in the direction -z   x B   .    Adachi and Mushiake 
—o    —o —o     —o 

represent the fields radiated by a phased line source along the static magnetic 

field in terms of a Fourier integral and plot the phase velocity curve of the 

surface waves (llj?   + rp as a function of the angle tan    (? /il )) for two 

different sets of values of the ratios of olasma and cyclotron frequency to 

wave frequency      They do not however evaluate the Fourier integral to ob- 

tain the surface wave fields 

Because of the mechanism of excitation chosen in this example,  the 

double Fourier integral expression for the radiated fields is most con- 

veniently expressed in a form that is somewhat different than that derived 

in Chfioter I.    In Section 1 below, the form of the integral representation in 
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terms of the transform variables ' and ^ is derived      Comparing this 

form with that of the integrals in (II-4),  the results of Chapter II and 

Section A of this chapter are used to find the various contributions to 

the fields radiated by the slot.    In Section 2 below,   results of numerical 

evaluation of the surface wave and direct ray radiation patterns are pre- 

sented for a particular set of values of the ratios of plasma and cyclotron 

frequency to wave frequency. 

1.   Ray-Optical Expressions for the Radiated Fields 

As depicted in Fig.   1,  the z axis is chosen normal to the conducting 

plane,  the y axis is taken in the same direction as the static magnetic field 

and the origin of the (x, y, z) coordinate system is located at the center of 

the slot.    For simplicity,  the impressed electric field in the slot is taken 

to be E   = E   x     with time dependence e 
— o       o —o 

the slot must satisfy the boundary condition 

The total fields radiated by 

Et(x, y, 0) ■ 

E     for (x, y) in the slot 

0  for (x, y) out of the slot 

(16) 

and the radiation condition at infinity      If the slot is small compared to 

wave length,  the boundary condition (16) can be replaced by the approximate 

boundary condition 

Et(x, y. 0) ■ Ao Eo6(x) 6{y) (17) 

where A    is the area of the slot 
o 

As in Chapter I,  the radiated fields may be represented as a double 

Fourier integral transformation of the form given in (1-2).    Furthermore, 

from Chapter I it is seen that the transforms of the fields,   öC- ri; z) and 

Ult,1\',m)t  will be superpositions of the modal fields  ö    {'x,r\)eJom    and 
— n. -m 

U.    {', r])e      0 m    of the plasma medium.    Because of the radiation condi- 
— m 
tion at 7. - <» , only the upgoing m = 3, 4  modes of the plasma medium are 

used in the superposition.    Thus 
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E(r) 

H(r) 
} = 1    JJ  A

m(?'^i 
&      (?,ri) .jk   (fx+^y + H       z) 

3,4      -» 

— m 

— m 
} 

rn 
d^  dri   . 

(18) 

where the A    's are to be determined from the boundary condition (17) at 
m 

z = 0. 

Using the Fourier representation for ^(x) ^(y) in (17) and using (18) 

for E.(x, y, 0),  the boundary condition (17) becomes 

r     T, -Jkn'?,: * W) 

-• -• M     00 

3,4 

= A E (-^) rr o -o  2n       J J 

h       I -jkj^x + iiy) 
e d? dT| (19) 

Because of the orthogonality of the escponentials on the infinite interval, 

(19) implies that 

k    2 
(20) I      Am<?'r   ^tm^^o*^ 

3, 4 

Crossing both sides of (20) with A? and then ä ^   and dotting with £    gives 

*i-VF' s.^ia'fä.WLt'la1 

k    2 

4 oZTT     —o       —13        —o      —o      —13     —14 

(21) 

Since the A    's of (21) have branch singularities of both K^ and K-J   and can 
m 0 3 4 

have pole singularities,  the integrals in (18) are of the form given in (11-4) 

with z' set to zero, i.e, for the source at the interface, and A      =   )   F      A   . 
m      L.    mn    n 

n 
This similarity permits the use of the results of Chapter II and Section A of 

this chapter in determining the ray-optical fields radiated by the slot. 
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For z' = 0,  the roots L     . and L    _ of (11-24) are zero and hence 
m 1 mZ 

L     > L     .,   L    _ so that 6        in (11-26) is given by (11-27).    Thus,  writing 
m ml       me mn 

L     = L = v:'    + y^ + z   ,   since L      is the same for all rays,  and writing 
mm 

6        as 6     ,  the stationary point or direct ray contributions to (18) are 
mn m 

given by (11-26) with L   = 0 and )   T       A    =A    .i.e., 
n L.    mn    n        m 

'£'   - r I I   { 
2TT 

S.P. 
3.4 S.P. LVT^ 

ö      A    | cos 9    |      -jk   LN        -j7 6 ■■M      m m' o m 4ml — m     m m o 
e 

s      s 

(22) 

In (22),  the stationary point summation is over all points on the m1^1 branch 

of the dispersion surface of the plasma medium at which v      is in the direc- 
— m 

tion of the displacement from the slot to the observation point. 

Since A^ and A^  of (2 1) have the same denominator, they can be 

written as 

A    (e.t!) = a    (t,1t)/4t«11 )   . m m 
(23) 

where the poles of A     are given by the zeros of (?, ri).    Thus,  from (1 5) 

r      m 
for z1 = 0 and )   y        A    = a    ,  the surface wave contribution to E of (18) 

L,    mn    n       m — 
n 

-jkoNgP    -j^sgnC^ 

(2n)3/2   v    ^ (E)    .-j*»;—Yj —— 
S.W. J* Q   v^P I C    ! 

o        p s        '     s' 
L *m 

a     e 
m 

-jk  M 
o ..}. 

3,4 «s ̂ P1 

(24) 

Expressions similar to (22) and (24) hold for (H )     p    and (H) with ^ 

replaced by ^1    .    For the choice of plasma paranneters made in the next 

section,  (18) will have no lateral ray contribution.     However, for other 

choices of the plasma parameters, lateral ray   contributions can exist and 

would be given by (11-41) with 2'=  0, i.e.,  with the incident segment L    of 

the ray set equal to zero, and   V y A    = a with a        defined from A 
_    ^mn    n       ^ m ^ m m 
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in analogy to (11-40). 

In order to evaluate the ray-optical fields radiated by the slot,  it 

is necessary to know the functional form of the various quantities appear- 

ing in (22) and (24).    The modal quantitites H    ,   ^      and ^     are most 
m    —m —m 

easily calculated if it is recognized that the modal or polarization vectors 

(5      and i/     are those of a wave propagating as e      0 —"^   — ,  where 
— m t- m 
k     =x? + yri + zH    ,in the plasma.    Substituting this form into 
—m     —o        J-o        —o  m 
Maxwell's equations gives 

kk      X(5      =it'uJ/ o — m     — m o em 

k   k     x ^ 
o ^m      "- m 

-it- e   e  ö 
o ~ —m 

(25) 

In (25),  €   is the relative dielectric tensor of the cold,  electron plasma. 

Crossing the first equation of (25) by k      and substituting the second into 
— m 

the result,  one obtains 

fe+k     k      • k      I  1  • i      =0 
L ~       -m —m    — m «. J      — m 

(261 

For (26) to have a non-trivial solution (5     » the determinant of the dyadic 
2 ~m 

[e + k      k      -k     l]   must be zero.    This condition gives the plane wave 
n     —m —m     —m «• 

dispersion equation (1-24) from which K      can be found.    The solution of 

(26) for  A      is then found by substituting H      into (26).    The magnetic field 
•^m m 

polarization vector J/     is then given by the first equation in (25). 

In the small signal approximation, a cold,  electron plasma with 

static magnetic field in the y direction can be represented by the relative 

dielectric tensor 

0 

e. (27) 

where 
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ei    =   ''ZI Y   -1 

e2   =   1-X (28) 

XY 

Y2-! 

In (28),  X = (uu   /UJ )     is the square of the ratio of the plasma frequency to 
P 

wave frequency and Y = JUC/D is the ratio of cyclotron frequency to wave fre 
2 7 

quency.    Note that uu     = N   /e   m where N is the electron density,  q the 
p       q   0 

magnitude of the electron charge and m the electron mass.    Also,  x    = 

qB  /m where the strength B    of the static magnetic field is positive if the 

field la in the plua y direction and minus otherwise. 

Substituting e from (27) into (26) and setting the determinant of the 

dyadic equal to zero, one finds that the plane wave dispersion relation re- 

duces to a bi-quadratic whose solution is 

m £2 + 
1 
2€ 

ei+e2     2        2 n   • I 2e 

er£2 
2c, / 

4     ,   2    Clfe2-2£ie2 ,  '  1/2 

r\   - 2T]        +   1 (29) 

In deriving (29), use was made of the relation e . = -(e . - l)(e   - e_ ),  which 

is easily verified from (28).    For fj real, the argument of the inner root is 

taken as 0 or n/2.    The plus sign is used for H-^  and the minus sign for K - . 

The argument of the outer root is taken such that H •?   and K^   correspond to 

upgoing waves. 

Knowing H     , the electric field polarization vector is found from (26) 
m 

to be 
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?        ?       2      1 
um       -o   i   m    3 • m J 

<   l0[-3H^-^"l-'    -"    --m'] 

— o    L 3        m     1 m   J (30) 

Using (30) in the first equation of (25), 

2       2       2 
ß      = J~ (x   f"^     «• - Si   e, -,,     Mc.-?    -1    -H     )1 -m     V ii     1-oL    m    3 3      m   1    1 m J 

,»2        2    , 
+ Io   e3^'    ■Hm, 

^oC'^-^m^ 8jf?ci<cr? -^ -*«>])    <31> 

Because E    =x     E,z        (A      xE) = -E<5      ,  and expanding 
— o     —o     o    —o        -^tm    —o o   ym 0 

z    •  (A,? x A -) with the help of (30), the a    's and d (?, n) of (23) can be 

written as 

k     2 
o 

a5(?,r1) = AoEo^(^)   /•jl,^   - «|   ) 

k     2 
a5(?,n) = AoEoAyi(^)   /^MH^   - «jj 

(32) 

and 

d(?,Ti) = ^ + '(H-  + K-) €3 + (e1-T1
2)(e1- ?2.T1

2 + K- H-)   .    (33) 

From (32) and (33) it is seen that (18) is invariant under the interchange 

of 3   aad 4 .    Thus,  as argued in Section 2 of Appendix B,   branch points of 

R«   and K?  ^ue to t^e inner root in (29) at which they are complex or imaginary, 

and hence equal,  will not be branch points of (18).    Since the singularity 

K t  ~ K 2 ^n ^^ ^s 0^ t^e ':>ranc^ tyPe'  i «• . H ?   ' *■ 2   aPProaches zero as 
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v/r| -T|     ,  this singularity will not appear in the fields.    In the next sectior, 
b 

it will be argued that the apparent singularity r\  = 0 in (32) is not a singu- 

larity of (18) and hence,  the only pole singularities in (18) are due to zeros 

of d{%, r\ ). 

Knowing K     (^, T|),  the quantities cos B      ,  G     and N      in (22) can be 
m ' m       m m 

found using (11-16), (II-l 7) and (II-l 8).    Also,   ^      in (22) can be found from 
2 2 m 

o S (II-l 4),  where P       = z ——r- K      and P = z =■ H     ,   and the stationary 
uu -2m vv -2m 

ou ov 
points (',11    ) from (11-15) with z'- 0.    From the solution of the pole locus 

S 8 

condition d{', r, ) = 0,  the surface wave dispersion curve n = TI   ('  ) can be 

found.    The solution n « Tl   (?)   can then be used to calculate C   ,  Q    and N p s        s s 
in (24) from equations (7), (8), and (13) and the definition of Q    given after 

(11).    The point (?    , ^    ) can be found from (5) using the solution n = ^i   (' ). 
P      P P 

2.  Surface Wave and Direct Ray Radiation Patterns 

For the sample calculation of the radiation patterns given here,  the 

plasma parameters were taken as u    /u  =5.0 and I x'   /n 1  =1.5.    This 
p c 

choice was made as being representative of the range of X and Y for which 

surface waves exist and only one direct ray,  at most,  reaches each observa- 

tion point in the plasma.   If the parameters had been chosen such that two or 

more direct rays could reach an observation point, a beat pattern would exist 

in the fields.    This beat pattern would result from the fact that the wave vec- 

tors of the several rays would not be the same.    In this case, the direct ray 

radiation pattern would not be independent of L. 

For the above choice of parameters €    = 21,  e     -  -24 and from (29) 

and the text follov   ng, it can be shown that H-; is complex or imaginary for 

all real \ and ri .    Moreover, from (29) , the dispersion surface is seen to be 

a surface of revolution about the ^ axis.    The plane curve whose rotation 

about the f\ axis generates the dispersion surface is given in Fig.   2.    This 

curve has open branches extending to infinity along the asymptotes indicated 

in Fig.  2. 
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Because the plane wave dispersion surface is one of revolution, 

its normal v at any point will lie in the plane containing f| axis and the 

point in question, i.e.,  in the plane of the generating curve.    The sense 

of the normal shown in Fig.   2 was taken in accordance wit*  the fact that 

for lossless media,  the wave vector k and the real part s of the complex 

Poynting vector of the associated plane wave make an angle  letss than or 

equal to 90   .    From the sense of  v in Fig.  2,  it is seen that K ^   will be 

negative for values of { and r\ for which it is real. 

As a point on the generating curve of Fig.   2 moves to infinity,  the 

angle betwe .n V at the point and the 1\ axis will increase monotonically to 

some maximum value.    The maximum value of the angle between v and the 

r\ axis,  which for the plasma parameters used here is 43.1  ,  is the com- 

plement of the angle between the asymptotes of Fig.   2 and the n axis.    Thus, 

since the dispersion surface is one of revolution about the T| axis,  all its 

normals lie within the two sheets of a cone whose axis is the r\ axis and 

whose half-angle is 43.1   .    Because the direct rays excited in the plasma 

by the slot are in the direction of v , they all lie within that region above the 

(x, y ) plane that is inside the two sheets of a cone whose axis is the y axis 

and whose half-angle is 43.1   .    Moreover,  since the generating curve of 

Fig.   2  has no inflection points,  which can be demonstrated analytically, 

and the dispersion surface is one of revolution,   G      -•0 only for r] -> <*> 
m 

and only one direct ray reaches each observation point in the illuminated 

region.    No propagating direct rays reach observation points outside the 

illuminated region described above. 

At the branch points of the inner root of (29), H -   is imaginary for 

the plasma parameters used here.    Thus,  the branch curve of K ^   at which 

it is real is that corresponding to the outer root,  and hence is the locus of 

points at which M ^   =0.    Because of this, the branch curve of K-^   at which 

it is real will coincide with the generating curve of Fig.   2 when this curve 

lies in the (%, r\ ) plane. 
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The surface wave dispersion curve,  which is given in Fig.   3,   was 

found numerically for B   > 0 from the condition dC, ri ) = 0 with d(f, n) 

as given in (33).    Because r| appears only in even powers in (29) and (33), 

the surface wave dispersion curve is symmetric about the - axiu.    For 

B   > 0, the dispersion curve crosses the | axis at ? = ■¥*T » as can Ällly 

be shown from (29) and (33).    The surface wave dispersion curve termin- 

ates on the brmch curve H •- = 0 where it is tangent to the branch curve, as 
* 

is indicated in Fig.  3. 

In addition to being zero on the surface wave dispersion curve of 

Fig.  3,  i(C«f| | vanishes on the locus of points n = ± ./e    + | e -1 ,  * > 0. 

This locus of points,  except for the two points where it is crossed by the 

dispersion curve of Fig. 3, is not part of the pole locus of (1 8).    That these 

points are not part of ths pole locus follows from the fact that the form 

given in (30) for (5^   vanishes at these points.    Thus,   A-? ,  Mi ,  a-?   and 
— 3 Jt 3      — 3 4 

d(?,r|) all vanish as  fi-? , and hence the integrand of (18) is regular at 

these points.    Similarly, the locus of points r\ = 0, which from (32) appears 

to be a pole locus, is not a locus of poles of (18),  except for the single 

point where the surface wave dispersion curve crosses the * axis.    For 

ri = 0,  ^^   given in (30) is zero and, as in the above discussion,  the inte- 

grand of (18) is regular. 

For m   /(ju = 10 and |u)   /uu |   =3, i. e. ,  at an uu half that used in com- p c n.—r puting the curves of Fig.  3, the value of y ?   + r)'" calculated by Adachi and 
(38) 

Mushiake on the surface wave dispersion curve is less than that for the 

dispersion curve of Fig. 3 along any radius in the (?,■") plane that inter- 

sects both curves. That the value oiJ% + r|Z on the dispersion curve in- 

creases with ■ along any radius implies that the radial component of v.   uu 
_t 

points away from the origin, where k    is the unnormalized transverse wave 

vector k (x    ? + y   T]).   Since the normal v    to the dispersion curve is to 
o —o        ■to — s K 

be taken in the direction <Ä energy flow of the corresponding surface wave, 

which itself is in the direction of V^ uu, v     must have a positive radial 
— t      — s -^  _  

By straightforward calculation, it can be shown that dn   /d? = -di/d,, 
where d^ and d^ are the derivatives of d(?, TI),  is equal to dr| fc/d* at the 
termination of the surface wave dispersion curve. 
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k7) 

End Point of 
Surface Wave 
Dispersion  Curve 

*f 

End Point of 
Surface Wave 
Dispersion Curve 

Fig. V-3    Surface wave dispersion curve for plasma-conductor interface 
ü^Au=5. o,   kc/«l = 1. 5 
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component.    The sense indicated in Fig.  3 for v    is seen to be in agree- 

ment with the above requirement.    While the foregoing assignment of the 

sense of v    was not checked analytically for all points on the dispersion 

curve because of the complexity of the functions involved,  it has been veri- 

fied analytically at the points where the dispersion curve crosses the | and 

T) axes. 

From the approximation dr|   /d? mä1\   /A ?   and the calculated values 
P P 

of TI   (K ), dn   /d? for fl    > 0 was found to be a monotonically decreasing 
P P P 

/unction of Z •    Since dr]   Id% is a monotonically decreasing function of ' 
P 

for r|    > 0, and because of the symmetry of the dispersion curve about the 

f axis, as a point on the dispersion curve moves away from the ' axis, the 

angle between the normal v    at the point and the -*  axis increases mono- 
— s 

tonically up to a maximum.    The maximum occurs at the end point of the 

dispersion curve and for the curve of Fig.   3 was found to be 75.1   .    Thus, 

the propagating surface waves excited by the slot illuminate only those 

points within a wedge-shaped region centered about the -x axis whose half- 

angle is 75.1  .    Furthermore, within this wedge, only one surface wave ray 

reaches each observation point, and hence the sum over p in (24) reduces 

to a single term. 

The real part S of the total Poynting vector of the surface wave propa- 

gating on Ihti plasma-conductor interface is, in accordance with Chapter III, 

given by 

S = J Re[(E) x (H)*       J dz (34) 

Substituting the expressions for the surface wave fields given in (24) into 

(34), and recalling that only one surface wave ray, at most, reaches each 

observation point, one find that 
♦ 

V    Re/a    a*Ä     xJ/%      0    m       "     } d, 
i    L I  m   n —m     —n J 
0 m.n (35) 

(m, n = 3 , 4 ) 

(2TT)- 

PQ8|C8 

 -  - 
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evaluated at (?   , r|    ).    A polar plot of the surface wave radiation pattern 
P     P 

g (Y), i.e.,  |S| p  normalized to its maximum value versus the angle 

¥  = tan   (-y/x), is given in Fig. 4 for uj   fm = 5.0 and |Uü   /uu |    =1.5. 
P c 

This plot is the surface wave radiation pattern of the plasma-conductor 

interface for slot excitation with E    = x    E  . 
— o     —o    o 

As can readily be verified analytically, the radiation pattern of Fig. 

4 is symmetric about ¥ = 0.    Had the field in the slot been taken as E  =yE   , 

vE  )     w    and (H ) would have odd symmetry about f -0 and hence the 
z D. w. y a. W. 

surface wave radiation pattern would have a null at "i  =0, although it would 

still by symmetric about Y = 0.    For E    in some other direction, the radia- 

tion pattern is not symmetric about Y = 0.    As discussed previously, the 

propagating surface wave contributions to the far fields exist only for 

|Y| <  75.1°. 

For the direct rays, the real part s of the local Poynting vector is 

s   = Re [(E) x(H ) 
S.P. S.P. 

(36) 

Since only one direct ray, at most, reaches each point in the plasma, the 

sums in expression (22) reduce to a single term having m = 3 .    Thus, 

.2TT 

o 

.2        2 
A- I    cos   6 ^ 

Re{^   BJJ  ) (37) 

evaluated at (?   ,r\   ),    In Fig.  5, the direct ray radiation pattern g,, which 
■     s d 

is defined as jsj Lr normalized to the maximum value of |s| p   for the 

surface waves, is plotted for observation directions in the (y, z) plane. 

The angle * in the polar plot of Fig.  5 is defined as tan' (z/y). 
2 2 

Note that in the (y, z) plane, sin * = cos    9^   so that from (37), g   vanishes 

at # = 0, 180  , as indicated in Fig. 4.    Also, g. is symmetric about $ = 90 

since the dispersion surface is about TI = 0 and s is an even function of ri   . 
* s 

As discussed previously, the propagating direct rays illuminate only that 

region between the conductor and the two sheets of the cone whose axis is 

the y axis and whose half-angle is 43.1  .    Thus g, can be non-zero only for 
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observation directions making an angle less than or equal to 43.1    with 

the y axis, as is shown in Fig.  5.    For i approaching 43.1    from below 

and approaching 136.9   from above, g, is singular since for these direc- 

tions, the direct ray contribution comes from points | k? |   -• •   on the 

open branches of the dispersion surface where the Gaussian curvature 

G-j   -   0.    This singularity has been shown to result from the use of the 

approximate boundary condition (17).    For an actual slot of finite extent, 

g, will have a maximum near # =43.1  , 136.9    but will remain finite. ■ 
Since the plasma medium is rotationally symmetric about the y axis, 

the pattern function of the terms | Re ((Jo x M% H  ^ I ^ I    w^ ^^ ^e r0" 

tationally symmetric about the y axis.    Thus, variations in the pattern of 

g    in planes containing the y axis are produced only by the variation of 
i      il        2 |A~ |     cos   9:* .    Note that since d(?, ri , in the definition of A- is not a 

symmetric function of £, the radiation patterns in the planes x = az and 

x = -a z will not be the same.    Defining   $ = tan   (vx   + z   / y).  in any plane 

containing the y axis, g, will be symmetric about i = 90    since A-   is a 

symmetric function of r) .    Furthermore, in any plane containing the y axis, 

g    will exhibit a singularity at f = 43.1  , 136.9    and will be zero for 

43.1 < i < 136.9   , as was discussed for the direct ray radiation pattern in 

the (y, z) plane.   In the (x, y) plane g. = 0 since for z ■ O.cos 9 -r = 0.   In 

Fig.  6 and Fig.  7, g    has been plotted as a polar function of #   for the 

planes x = z and x = -z, respectively. 
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-10° 
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No  Propagating 
Surface Waves 
in this Region 
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Fig. V-4    Surface wave radiation pattern for plasma-conductor interface 

Mp/lt1« 5.0, |(|)c/j;| • 1.1 
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SUMMARY 

In Chapter I, the form of the double Fourier integral represen- 

tation for the fields radiated by a ooint source in the presence of a planar 

interface between two arbitrary, lossless, homogeneous, anisotropic 

media was found.    The stationary ooint and branch curve contributions to 

the asymptotic evaluation of the Fourier integral representation were 

considered in Chapter 11.    The stationary point contributions were inter- 

preted in terms of direct, transmitted and reflected rays, which are the 

trajectories of energy flow in lossless media, and the associated fields 

were cast into ray-optiral form.    The ray-optical form of the fields dis- 

closes the local nature of ray propagation.    This local nature suggests 

ways of extending the ray-optical results to geometries not amenable to 

rigorous analysis.    One such extension was considered in Chapter II, 

where the fields reflected from and transmitted through a curved inter- 

face between two anisotropic media were calculated. 

In Chapter IJ„ the branch curve contributions were interpreted in 

terms of lateral rays and the fields cast into ray-optical form.    The 

lateral ray is the trajectory of energy flow of a ray having three seg- 

ments, one of which lies in the interface.    While the branch curve contri- 

butions are of lower order than the stationary point contributions, in 

geometric-optical shadow regions where the stationary point contributions 

are exponentially small in all orders, the lateral ray fields will form the 

dominant contribution to the far fields.    Unlike the lateral rays excited by 

a line source or point-source lateral rays In Isotropie media, the point- 

source lateral ray fields in an Isotropie media can have strong direc- 

tional dependence other than that introduced by the source.    This depen- 

dence can include caustics and shadow boundaries. 

The ray interpretation of the stationary point and branch curve 

contributions to the far fields was based on the fact that plane waves in 

lossless media carry energy in the direction of the normal to the plane 

wave dispersion surface.    In order to interpret the real pole contributions 

to the far fields in terms of surface wave rays, it was necessary to derive 
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a relation between surface wave group velocity and energy velocity analo- 

gous to that for plane waves.    Such a relation was derived in Chapter III 

for surface waves in arbitrarily plane-stratified, lossless, anisotropic 

media.    It was found that the surf.*'-? wave group velocity was oqual to 

the ratio of the integral,  over the coordinate of stratification,  of the real 

part of the complex Poynting vector to the corresponding integral of the 

energy density.    Thus,  the real part of the integrated Poynting vector of 

a surface wave is in the direction of the normal to the surface wave dis- 

persion curve.    The necessity for integrating the local Poynting vector 

over the coordinate of stratification results from the fact that its direc- 

tion, as well as magnitude,  can vary with this coordinate. 

The relations between the energy flow and stored energy in a 

plane-stratified structure and the derivatives, v^ith respect to the trans- 

verse wave numbers and frequency,  of the dyadic surface impedance 

representing the structure were also determined in Chapter III.    The 

significance of these relations for surface waves on a dyadic surface 

impedance plane was discussed. 

As an example of the effect of anisotropic media on surface wave 

propagation, the surface waves on a uniaxial plasma slab were found in 

Chapter IV.    The effect of the anisotropy is clearly seen in the surface 

wave dispersion curve, which has an infinite number of open branches, 

i.e., the branches do not encircle the origin.    Furthermore, these sur- 

face waves illustrate the fact that the direction of the Poynting vector 

can vary with the coordinate of stratification. 

In Chapter V, the real pole contributions to the far fields of a 

point source in the presence of a planar interface between two aniso- 

tropic, lossless media were evaluated.    Using the relation between the 

group velocity and the energy velocity of surface waves derived in 

Chapter III, the real pole contributions were interpreted in terms of 

surface wave rays.    These rays are the two-dimensional trajectories of 

energy flow in lossless media.    In the far field, the surface wave contri- 

bution at all points along a line perpendicular to the interface comes from 
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the same surface wave ray.   In effect,  surface wave ray propagation is a 

two-dimensional phenomenon, the variation in the third dimension merely 

describing the local strength of the surface wave fields.    For source and 

observation points near the interface the surface wave contribution varies 

as the inverse square root of the distance between these points while the 

direct and scattered ray fields vary as the inverse of this distance.    Thus, 

for source and observation points near the interface, the surface wave 

rays give the dominant contribution to the far fields. 

Unlike the surface wave fields excited by a line source or a point 

source in Isotropie media, the surface waves in anisotropic media due to 

a point source may have a directional dependence other than that introduced 

by the source.    This directional dependence can include such features as 

shadow boundaries.    As an illustration of the directional dependence of the 

surface wave fields, a specific configuration was considered in Chapter V. 

This configuration consisted of a gyrotropic plasma above a perfectly con- 

ducting plane.    The gyrotropic anisotropy was assumed to be produced by 

a static magnetic field parallel to the conductor and excitation of the R.  F. 

fields was by an impressed electric field in a slot cut in the conductor.   In 

this configuration, the surface wave fields are confined to a wedge region 

centered about the direction perpendicular to the static magnetic field and 

lying entirely on one side of the static magnetic field. 
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Appendix A 

EXCITATION COEFFICIENTS OF PROPAGATING 

PLANE WAVES 

For the case of point source excitation and real  K   ,   it is possible 

to find a particularly convenient form for the excitation coefficient A 
n 

given in (1-54).    Substituting the form (1-36) for  I  (k  ) into (1-54) gives, 

2 

for  H     real, 
n 

n       n \2TT/ '.+(%'- 
I* 
M  , 

Y
+

(K   )-W     W 
tz 

J 
— oz 

z M 
J—oz 

M   . 
n 

(A-l) 

For lossless media,   |   is Hermitian so that £,      in (1-6) is equal to e   u tz ' ~et 
and hence from (1-11), (1-12) and (1-13) it is seen that 

Wt   W 
tz     z 

c       —tz 
zz 

  z     x k 
tkt    —o     — t 

o 

o    zz 
z     x k^ 
— o     —t 

= W 
zt 

(A-2) 

Using (A-2), the product  f. (H )• W     W    in (A-l) can be written as 
t     n       tz     z 

f*(„  )• w    w   . fw   • fin )]+ . 
tn tzz       LzttnJ 

(A-3) 

But  Y (K   )  represents the transverse electric and magnetic field polari- 

zation vectors of the plane wave propagating as   exp [ -jk (? x + r|y + K   B) ]. 
o n 

The  z  components   Y  (H   ) of the polarization vectors of this plane wave are 
z    n 

given in terms of the transverse components by (1-52).    Thus,  with the 

help of (A-3) an''. (1-52), it is seen that the bracketed term in (A-l) can be 

written as 
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t    n 
+  Y (K   ) 

z    n 
oz 

M 
oz 

lit * 

• J    •  J    +ß    ■  M — n    —o     —n    —o 
(A-4) 

where   (5     and JJ-    are the polarization vectors of the plane wave fields 
— n —n 

Consider now the normalizing constant M    in (A-l), which is 
n 

defined in (1-30).    By direct expansion it is possible to show that for real 

x 

M     =  2 Re ["(ö   . x;/ *)•  z     ]   =  28 (A-5) nz 

n 
I     =  2 Re ["(6      xJJ-*)-  z      1   =  2 s n u-^nt     — nt     —oJ 

where   s       is the  z  component of the real part  s      of the modal complex nz —n * 
Poynting vector  <5    x M- Recognizing that e   ,   as defined in (1-41), — n     — n n 

(A-6) 

has the same sign as   s     ,   it is seen that 
nz 

M  /e n    n 
2 |  cos 6     ||Re((5    xj;    ) n —n     —n 

where  9     is the angle between the positive  z  axis and  s    .    Finally, 

substituting (A-4) for the bracketed term in (A-l) and using (A-6), one 

obtains 

k    2 
An = (??) (£-:L+^-il)/2lc089JIRe(<5    x;/*)|       (A-7) n       \2TT/     —n   —o   —n   —o n — n    —"n 

which directly exhibits the dependence of the dependence of the excitation 

coefficient A    on the strength of the point source and the polarization 

vectors j5     and U     of a propagating plane wave. 
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Appendix B 

STEEPEST DESCENT EVALUATION OF THE 

INTEGRAL OVER  TI 

In order to asymptotically evaluate double integrals of the form given 

in (II-5) by the method outlined in Section B of Chapter II, it is essential to 

first evaluate 

J H''^e 
•jkoP(?.Ti) 

dri (B-l) 

by the method of steepest descent.    In performing the integration indicated 

in (B-l),   §   is assumed to be real and is held constant.    Also,   H      and  K 
m n 

are assumed to be continuous functions for  '   and TI  real so that  P(?,f|) 

will be continuous. 

Because the various wave numbers  H  appearing in the factors of 

(II-2) and (II-4) are t.ie roots of quartics, the complex 1) plane will con- 

sist of four Riemann sheets in the case of the direct field integral« (II-2) 

while for the scattered field integrals (II-4) it will consist of sixteen sheets 

(as argued in Section 2, the  x's  are the only multivalued functions appear- 

ing in the integrands of (II-2) and (II-4) ).    The various Riemann sheets are 

connected at the branch points of the  H'S  and along the associated branch 

cuts.    With these comments in mind, the path of integration for (B-l) is 

the real r\ axis on an appropriate Riemann sheet with suitable indentations 

into the complex f| plane about the branch point and pole singularities of 

the integrand. 

Since the Fourier integral representation for the fields was originally 

defined with the summation signs of (1-55), (1-56) and (1-57) inside the inte- 

gration signs, the branch cuts are the same for all direct field integrals 

and for all scattered field integrals.    In order to satisfy the radiation con- 

dition, the branch cuts originating at each real axis branch point of the  H'S 

at which the wave number is real are taken such that on the indented por- 

tions of about the branch points of the integrations paths for the various 
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scattered and direct field integrals   -j K   (z - z1) in (II-2) and  -JK    z or 
n in 

JK  z'  in (II-4) has a negative real part.    Finally, the branch cuts may 

not cross the real l| axis since otherwise the continuity assumption 

made above would be violated.    While the foregoing restrictions on the 

branch cuts are relevant to the steepest descent evaluation of (B-l), the 

ray-optical expressions for the far fields are formulated in such a way 

that thi  branch ruts need not be considered. 

The asymptotic evaluation of (B-l) ha» betn considered by many 

authors md only a brief discussion of the features of the evaluation perti- 
,     ,    ,       . ^       (11,22,40)     . .     . . 

nent to the present analysis is given here .    In particular, when 

F(?,TI) and P(?,TI) are those of the integrands of (II-2) and (II-4), (B-l) 

represents the direct or scattered portions of the fields radiated by a 
(4) phased line source along the x direction* Appropriate to the present 

analysis, only the contributions to (B-l) arising from real, isolated saddle 

points, branch points and poles will be considered.    In the phased line 

source problem, the contributions from these points correspond to direct 

and scattered rays, lateral rays and surface waves,  respectively.    In 

applying the steepest descent technique to the evaluation of (B-l), the 

original path of integration in the complex r\ plane is deformed into the 

steepest descent path, taking due account of any intercepted singularities. 

1)    Real, Isolated Saddle Point Contributions 

The saddle points in the r)  integration (for fixed ?) are the 

solutions of 

tyCtfH = R P(?.T1) = 0. (B-2) 

The real saddle points are the real solutions of (B-2) and the first-order 

contribution to (B-l) from theee points is 

(JdTl)saddle~>/irZ 
.  . os point 

e e 
V|P,,(?,ri )| 22 

(B-3) 

where the sum is taken over all real saddle points  r\  .    In (B-3) , 
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P,,(§iTl) 3—5-P(§iil) and the function sgnX = - 1  for  X < 0,   while for 
fab -.fa 

X > 0,   sgnX = 1  and for X = 0,   sgnX = 0.    Expression (B-3) is valid 

when the saddle points are isolated from each other and from the branch 

points and poles of the integrand of (B-l). 

2)     Real,  Isolated Branch Point Contributions 

When the integrand of (B-i) represents that of (II-2) or (II-4), 

the branch points in  F(Ü,'n) and P(?,TI),  considered as functions of T],   are 

those that occur in the solution of (1-24) for the single-valued functions 

*  (^»'H)«    This is seen from the fact that the eigen or transverse polari- n 
zation vectors of (1-23) can be written as polynomials in  ? ,  r] and M 

n 
(any other normalizing factor in the mode vectors will cancel out among 

the factors in (II-2) and (II-4)). Hence, the   z  component of the polari- 

zation vectors given in (1-52) is a polynomial in '  , r\  and H   .   Further- 
n 

more, the scattering coefficients of (1-46) and (1-52) and the excitation 

coefficient A    of (1-54) are ratios of such polynomials and thus have only 

the branch points of the  H'S. 

Those branch points of the  H'S  at which the wave number com- 

plex or imaginary need not be considered since they are not branch points 

of the total Fourier field transforms as given in (1-55), (1-56) and (1-57). 

This is seen from the fact that at a branch point, two solutions of (1-24) 

for the  H'S  of the € .   medium are equal or two solutions of (1-24) for the 

H'S  of the e     medium are equal.    If the two  H'S  that are equal at the 

branch point are complex or imaginary, they both correspond to upgoing 

or to downgoing waves,  i.e.,  at the branch point  H"?   ■  K'T  or  H*r   =  K*1 

or  H H"!  or  H*: 4 3 
H^ .    Thus,  such a branchpoint connects two 

Riemann sheets on which H   is an upgoing or downgoing wave number.    But 

(1-55), (1-56) and (1-57) are invariant under the interchange of  1   and   2   , 
♦- ♦- -> — 

the interchange of   1    and   2    ,   the interchange of   3   and   4   and the inter- 
«- ♦- 

change of   3   and   4   .    Hence, the branch points at which the  H'S  are com- 

plex or imaginary do not appear in the total fourier field transforms.    Any 

contribution to one of the integrals defined in (II-2) or (II-4) arising from 
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branch points of one of the  H'S  at which K is complex or imaginary will 
(7) 

be canceled by a similar contribution to another of the integrals      .    If 

P(?,r|) is complex at some branch point, the contribution from this branch 

point will be exponentially small so that only the branch points of the  K'S 

on the real axis and at which P(?,T]) is real need be considered.    Such 

branch points will be called real.    Note,  branch points at which 

Re[-jP(§ ,Tl)]   is positive cannot be intercepted in th    deformation of the 

original integration path since they lie in hill regions. 

The real branch points of K      and H     appearing in P(§,'n) are 
m n 

not intercepted in deforming the original integration path into the steepest 

descent path since the radiation condition requires that the original inte- 

gration path be indented about them in such a way that  -JH  (z-z1) in (II-2) 

and  -JK    z or JH   Z'  in (II-4) have negative real parts.    Furthermore 
m n 

dn/dri - • at a branch point of H   SO that  -jP/?,'n) will have a negative real 

part on the indented portion of the integration path about the branch points 

of H       and H     even if the real part of  -jT]y  is positive there.    Because of 

this, the indented portions of the original integration path will lie in the 

valley regions to start with, and hence the real branch points of P(?,Tl) 

will not be intercepted.    When the integrand of (B-l) represents that of 

the direct field integrals (II-2), no branch point contributions will arise 

since  F(?,'n) contains only the branch points ofthat K     appearing in 
•■ n 

P(?,Tl).    However,   F        in the scattered field integrals (II-4) depdends on 
mn 

all the  K'S  SO that these integrals may have branch point contributions. 

For those real branch points interceoted in the deformation of 

the original integration path, the branch cut may be chosen to lie along the 

steepest descent path through the branch point.    With this choice of the 

branch cut, the principal contribution to the branch cut integral will come 

from the vicinity of the real branch point.    In the vicinity of an isolated 

first-order,  real branch point Tl = TK    of  F(§,r|),   the dependence of F(?,T]) 

on T)  can be exhibited as   F(§,TI)  =   F^(?,r|, Vil - T]    ) where  äF/äll   is 

regular at the branch point.    Assuming F(§,r|) itself to be bounded at 

branch points that are not also branch points of P(§,Ti),   to first order in 
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dF OF 
Jr]- K 

Z-Jri-v 
(B-4) 

with only the last l.erm contributing to the branch cut integral.    In the 

definition of F  and in (B-4),   •/'n - Tl      is assumed positive for  Tl - rl.   posi- 

tive real and the branch cut for this root is taken along the cut originally 

used in defining   F(:,'n). 

Assuming that the branch point  fL   is not a branch point of 

P{: , r|)  and that no saddle points are near the branch point,   P(",TI)  may 

be approximated to first order in the vicinity of fL   as 

P(?.T1)  «   P^.\) +   P2(-
Tlb)(Tl-\) (B-5) 

with  PJ-iiT) ^ 0.    Because the principal contribution to a branch cut 
Z b 

integral comes from the vicinity of the real branch point,  the approximate 

expressions (B-4) and (B-5) for  F(?,TI) and P(?,TI) may be used in the 

integration. 

K Pyi'^y.) is positive (negative),  using (B-5) in (B-l) it ii 

seen that the valley region in the vicinity of ri     lies below (above) the real 

TI  axis.    Thus,  using the approximations described in the previous para- 

graphs,  the branch cut integral becomes 

at •jk p     Tlb-J-8gnP2 

iVn - n 
J -Jr\-\  e dri 

b 

OF 
where 

Vtj - T). 
,   P(?,Ti) and P-(?,TI) are evaluated at T] = TI   . 

c o 

(B-6) 

The path 

of integration in (B-6) is along the right-hand side of the branch c Jt of 

V1! - 'H.    .   which is taken here as lying along  Re T] = TI   .    The integral in 
b b 

(B-6) can easily be evaluated using the substitution  s = jk (Tl - r)  ) P (? ,r|   ) 
o b       £ D 

where   s  is positive real.    With this substitution and recalling the 
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definition of VT] - IT    In the previous paragraph, 
b 

yTi-iib svWko|P2| exp (-j^8gnP2). 

Performing the integration indicated in (B-6) and summing over 

the various real branch points of F(§,ri) that are not also branch poinn of 
3/2 

P(?.il),   the real branch point contributions to (B-l) are given to 0(1/k       ) 

by 

^T: -Jk P • 3TT 

'/^'branch" ^MUt1(VT,^rFF TTi57"2 

point obi be 
*-\ 

(B-7)    . 

Ejcpression (B-7) is valid when the branch points are isolated from each 

other and from the saddle points.    The Heaviside unit step function 

ul ^(TI - Ti )J it included in (B-7) to indicate that a particular branch point 

will be intercepted during the deformation of the integration path only for 

certain values of r    (the value of r\    depends or: '  and on the coordinates 

of the observation point).    The choice of the plus or minus sign can be 

determined in any particular problem.    Strictly speaking, the single step 

function is not sufficient to describe when a particular branch point is 

intercepted if (B-l) has several real saddle points.    However, for conve- 

nience the single step function of (B-7) is retained here but is replaced in 

Section E of Chapter II by a ray-optical expression that is valid no matter 

how many saddle points occur in (B-l). 

3)    Surface Wave Pole Contributions 

Net pole contributions to the total radiated fields can occur only 

in the scattered fields.    These pole contributions are associated with those 

zeros of the common denominator  d(?,ri) of the scattering coefficients at 

which the Fourier transform of the total scattered field  E     is singular.    To 
-jko(§X + Tly) 

within the factor  e ,   the Fourier transform of E     is the inte- 

grand found by substituting (II-4) into (II-3) and interchanging the order of 

summation and integration.    The integrands of the individual integrals in 
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(11-2) and (II-4) can also have pole singularities in the r| plane at those 

branch points of the H'S at which x is complex or imaginary. However, 

any contribution from such branch points to one of the integrals (II-2) or 

(II-4) -- except when this point is also a pole of the transform of £?_ -- 

will be canceled by a similar contribution to another integral. Thus, only 

contributions from those poles of the integrands of the integrals of (II-4) 

that are poles of the transform of Er need be found. 

The poles giving a net contribution to  Er that are of interest 

here are those poles, called surface wave poles, lying on the real   r| axis 

on that Rit mann sheet on which the original integration path is defined 

since only these poles give rise to surface waves propagating along the 
# i   i 

interface.      In order to satisfy the radiation condition for   (y| "* aB ,   the 

surface wave poles intercepted during the deformation of the integration 

path must be such that the y component of the total modal surface wave 

power, i.e. , ^    •  sdz where £ is the real part of the complex 
.   JO 

Poynting vector associated with the modal surface wave fields for (?,Ti) 

appropriate to the pole, has the same sign as  y.   The above requirement 

is satisfied if the original integration path is deformed above (below) those 

surface wave poles contributing for y positive (negative).    That these 

indentations are correct is seen from the fact that for y positive (negative), 

the integration in (B-l) could be carried out by deforming the integration 

path into the lower (upper) half of the l| plane.    With the foregoing inden- 

tations about the surface wave poles, it is seen that the integration about 

the poles contributing for y positive (negative) is to be taken in the clock- 

wise (counter-clockwise) sense about the poles. 

For reasons that will be discussed at appropriate points in this 

analysis, the surface wave contribution will be considered only for obscr- 

Vx2 + v2   >> Ul .   Iz'l vation points such that Since the choice of the 

In limited regions of space poles corresponding to other wave types, 
(41,42) 

e.g., leaky waves       '       , may be intercepted.   Such pole contributions 
are not considered here. 
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(x,y) coordinates is arbitrary,  under the above restriction the  (x,y)  coor- 

dinates can always be chosen such that   |y| > > |z| ,   Iz'l .   which insures 

that all surface wave poles appropriate to the sign of y are intercepted 

during the deformation of the integration path.    To see that all appro- 

priate surface wave poles will be intercepted for   !/{ > > |z| ,   U'l ,  recog- 

nise that for thia case the saddle points will coaless with certain branch 

points of H      and K     appearing in P^,1"!).    Thus,  if the branch curves 
m n 

associated with these branch points are taken along the steepest descent 

paths through the branch points, the steepest descent path for y positive 

(negative) is the same as obtained by deforming the original integration 

path in the lower (upper) half-plane,  in which case all appropriate surface 

wavf, poles are intercepted. 

Writing  F(;,r|) as 

F(-:,TI) ■JMJ / d(?,n) (B-8) 

where the poles of F(?,'n) are given by the zeros of d(?,'ri),   for 

|y| > > |z | ,   Iz'l  so that all appropriate surface wave poles are intercepted 

for  y^O,   the surface wave pole contributions to (B-l) are 

-     f^.T!) -jk     Pil.T]) 
(JdT1)poie 

= "2TTJ 8*nyl OT^T 
e ! <B-9) 

p /z 

where the sum is taken over the contributing surface wave poles and 

a i , 
d2(?,r])=-r—d(?,ri).    If   |y|  is not taken sufficiently large,  some   or all 

of the surface wave poles will not be intercepted in the deformation of 

the original integration path.    This reflects the fact that in such a case, 

exponentially small errors in the saddle point evaluation (due to the finite 

radius of convergence for the series expansion of F(?,ri) about the saddle 

point) are larger than the pole contribution. 
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Appendix C 

SCATTERED RAY TANGENCIES TO A CAUSTIC 

AND EXPRESSIONS FOR 6 

In Section 1 of this appendix expression (11-14) for  6   is established 

and is then used to derive (11-20),  which applies when   P(!,T|) is the phase 

function found in the direct ray integrals (II-2).    The properties of the 

roots   L    ,   and  L    _   of (11-24) are considered in Section 2.    First,  the 
ml mc 

conditions under which the roots are real are found.     For those condi- 

tions under which the roots are certain to be real,  the number of positive 

roots is determined,  i.e. ,  the number of scattered ray tangencies to an 

actual caustic.    These results are presented in Table C-l,  which also 

contains the value of 6 along the scattered ray.    In Section 3 it is 
mn ~ 

shown that the change in  6 along a scattered ray,   as a point of tan- 
mn 

gency to a caustic is crossed,  can be found from the ray direction, the 

normal to the caustic and the shape of the  m      branch of the dispersion 

surface. 

1)     Verification of (11-14) and (11-20) 

In establishing (11-14),  recognize from (11-13) that 

-  (sgnP22)[l + 8gn(P11P22-P1^)]   . (C-l) 

The second derivatives of the phase  P(?,ri) :n the generic integral (II-5) 

contain only z,  z'  and the second derivatives of K       and K   .   Since  K 
m n m 

and  K     are point functions,  P. , , P__ and P, _ are the elements of a 
n 11       22 12 

symmetric second-rank tensor.    Thus if the (u,v)  coordinate rystem, 

rotated from the (§,Ti)  system by an angle  $,   is such that at the station- 

ary point in question   P       =0,   where the   u  and v   subscriptb indicate 

partial differentiation,  then 

P..  P,_  - P.     = P      P 
1122 12        uu    vv 

(C-2-a) 

and 
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2 2 
P_    = sin   BP      + COS    ^P      . (C-2-b) 

cc uu vv 

Therefore,  if both  P       and P       are positive (negative),   then 
7 uu vv 

PllPj2 - Pj- > 0 and P      > 0 (P      < 0)  so that from (C-l) one finds that 

6 = 2 (6 = - 2).    If P      and P       are of opposite sign,   P. , P0^ - P.    < 0 uu w i-r o 22   22 12 
and from (C-l),   6=0.    These cases can be summarized in the form 

6 =  sgn P      + sgn P     , (C-3) 6       uu        s       w 

as was to be shown. 

In order to show that for the direct rays 

6   =  sgn K   .  + sgn K   ,  , (C-4) 
ni nc 

as stated in (11-20), where  K   .   and K   _   are the principal curvatures of 
, nl n2 

the n      branch of the dispersion surface,  recall that in the (u,v) coordi- 

an ö   H 

nate syitem P      ^z-z') r^- ,   P      ^z-z') ^-and 
uu 2 w ^   2 

0 U 0 V 

a2. 
o P      =(Z-Z

,
)T—5— .    The Gaussian curvature of the  n      branch of uv ' o u o v 

the dispersion surface is the product of the principal curvatures and can 

be written as 

Gn 
= K

ni Kn2=( T"  T1   v (C-5) 
!!!     '"    l du2      öv2 /   nz 

while twice the mean curvature is the sum of the principal curvatures and 
(25) can be written 

i^K    2   a2H OK    2   d2H 

L      Väv/   J   ^   I   L     \T«/JT   2 nz 

(C-6) 

r nege 

tive as the corresponding centers of curvature lie on the same or opposite 

side of the surface as the normal  v    .    Since the sense of v      is taken to 
— n —n 

be the same as that of the power flow of the corresponding plane wave. 

Here,   v        =  z     •  v      and the principal curvatures are positive or nega- 
nz       —o     —n 
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(z - z") and v       have the same sign.    Thus   P       and P       are both posi- 
nz 0 uu vv 

tive (negative) when  K and  K  _  are both positive (negative).    Also 
ml nZ 

P       and  P       are of opposite sign if K   ,   and  K  ,   are, thus verifying 
uu vv nl n2 

(C-4) and (11-20). 

2)     The Nature of the Roots   L     ,   and   L    _ 
ml m2 

In studying the roots   L    ,   and  L    „  of (11-24) for the rays scattered 
ml m2 

from a planar interface,  those combinations of signs of the principal cur- 

vatures of the   m       and   n       branches of the dispersion surfaces for which 

the roots are real and those combinations for which the roots can b<» com- 
2 

plex are first found.    Since the Hessian  P       P P  ~  is an invariant, it 

can be evaluated in the  (a,T) coordinate system defined by the require- 

ä
2„ 

ment that 
m 

So a 
of the (o, T)  system 

2 2 
11    22       12       m   mz 

= 0  at the stationary point in questior .    With thi;s choice 

ft2        ^ 
fc     rn       m i   . 
 7 f^'WiX«.!* ^   c   ^   c      m mz 

o a     o T 

r*\ *K 
m 

a2 0  H 
m 

rt 
2^2    >   2   .    ^ 

+  z' 
OK    OH     f i K 
 n    n    [   n 

Ua2^2'^ 
(CT) 

Consider now the (s.t) coordinate system defined by the requirement that 

m—r- = 0 at the stationary point.    If Q  is the angle between the   s   and a 
OS at 

and if a = cos cp,   then 

and 

A a2 ft2 

n 2        n       ,,        2. n 
T  =  a  +  (1  - a   ) r- 

ha ds at 

*\ a2 a2 
-OK ->  ^   H 

n        ,, 2.        n 2 n -   =  (1 -a   ) _ 4 a   —rr- 
di 

>2       >Z 
OK       a   K 
 n    n 
T~r i 2 

as' at 

^2        2       .2 2 
OK a   n     O   K 

n n n 
Saar ^2.2 

0 8 0 t 

(C-8) 

(C-9) 
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With (C-8) and (C-9), (C-7) can be rewritten 

_        — c    . £      Z       m       m.i.iZ       n       n 

oa     ox osot 
(C-10) 

+ L    z1 

m 

A 1 
m 

V 
mz a 2 

3 

a2 A
2
   T _dH       -OK 

/i    s     n ,   2     n 

(1-al—j + a —j 4 
^t ^t , 

A - * 
m 

i:iZ 2 
o T 

2     n , .,    2,     n 
a +(1.a) 

äs ät 

which will have real roots   L    ,   and  L    _  if its discriminant is positive. 
ml mZ 

The hybrid notation in (C-10) is used since the signs of the second deriva- 

tives of H      and H     can easily be related to the signs of the corresponding 
m n 

principal curvatures only when the mixed second partial derivatives are 

zero.    Defining q     = 7- /  r—   and q    = r- / r- ,   the discrimi- 
m        ,    Z   /      ,    Z n        vZ/i.Z 

a -   '   d T 
nant of (C-10) will be positive if 

s at 

Q ■ a4 (q    -I)2 1% -l)2 - 2a2(q-l)(q  -l)(q    q +l) + (q    a   -l)2 (C-ll) m 11 Til n m n nn n 

is positive. 

At any particular stationary point,   q    , q    and a  are known so that 
m      n 

Q is known.    However,  for the present study it is more convenient to 
2 

consider  Q as a quadratic in a     with q      and q    as parameters and tc 
«        2   n 

investigate the sign of Q in the interval  0 < a    < 1   corresponding to real 
2 

angles qp,    At a    =0 

Q =  l%*Am ' !)    >0 
m  n — 

(C-12) 

while at a    =1 

Q = (v-v i0- (C-13) 

As a function of a   ,   Q has a minimum value of 

Q    . mm tqmqn 
(C-14) 

occurring at 
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WS 1 
m  n 

(q    -l)(qn-l) m n 
(C-15) 

From (C-5),  when represented in the  (',') coordinate system for 

^2 
o    H 

which ■—r— = 0,  it   is seen that   G      and  q      are of the same sign.   Simi 
JJ o ^ mm 

larly,   G     and  q     are of the same sign.    Thus,  using these relations and 
n n 

(0-14) and {C-15) and the fact that  Q > 0  at  a    = 0, 1,   the sign of  Q  in 

the interval  0 < a    <  1   can be determined for the three separate cases that 

must be considered. 

Case  I:       G      and  G    positive 11 m n 
In this case   q      and  q     are both positive and from (C-15) the minimum 

m n 2 

value of Q occurs outside the interval  0 < a    < 1.    Since   Q > 0  at 
2 ~     Z~ 

a    =0,1   the value of  Q  in the interval  0 < a    <  1   is always greater than 
—       — 2 

or equal to zero and hence only for real values of  L      will P .?__- P, 0 = 0. 

Case  II:    G      and  G    of opposite sign 
~-~m^~~—        m n 
In this case  q      and q    are of opposite sign so that the minimum value of 

m n 2 

Q,   as given in (-14),  and hence   Q for all a   ,   is greater than or equal to 
2 

zero.    Again,   P-.P     -P.- = 0 only for real values of L    . 
11    c.c.       I c m 

Case III:   G ^   _ 
         m  and G    negative 

n 
In this case  q      and  q     are both negative and the minimum value of  Q, 

rn n _ 
which is now negative, occurs within the interval ()< a   < 1.    Thus,  for 

this combination of signs of th» Gaussian curvatures, and for values of 

cp  such that  cos   .:   lies between the roots of (C-ll),  the values of  L 
2 m 

for which   P     P     - P       = 0  will be complex and consequently (11-24) will 

have complex roots   L    ,   and  L    _.    For real  r   and when  cos  ■   is not 
ml m2 

between the roots of (C-ll),   Q is the positive and P     P-P       will 

vanish fr .' real values of L 
m 

In summary,  only for that combination of signs of the principal 
t h f h 

curvatures of the   m       and  n      branches of the dispersion surfaces 

indicated in the last case of Table   C-l   can the roots   L    ,   and  L    „   be 
ml m2 

complex. 

For those combinations of signs of the Gaussian curvatures for 
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which (11-24) is certain to have real roots   L^   and L^.   the number of 

positive roots, i.e. , the number of times a ray scattered from a planar 

interface is tangent to an actual caustic,  can now be determined.    The 

results are summarized in Table C-l.    From this table it is seen that a 

simple inspection of the dispersion surfaces for the signs of the principal 

curvatures is sufficient to determine,  in all but one case, the number of 

times a scattered ray is tangent to a caustic.    For the case when K^   and 

K       are of opposite sign and  K    .   and K    _  are also of opposite sign,  it 

is not longer possible to predict the nature of L^   and  L^ from a simple 

inspection of the  mth  and nth  branches of the dispersion surfaces since 

the nature of the roots depends not only on the shape of the two branches of 

the dispersion surfaces but also on their orientation,  as was shown above. 

To derive the number of tangencies of the scattered ray to an actual 

caustic, as given in Table C-l, it is necessary to consider the signs of 

the coefficients in (C-10) for the various cases appearing in Table C-l.    To 

facilitate these considerations, observe from (C-5) and (C-6), when repre- 

m 
»ented in the (a,T) coordinate system for which   |^j^ = 0,   that 

^2 i2 
m 

v and   v        iH   win both be positive (negative) if K    ,   and 
mz   ^2 mi 

mz   S a2 —  är 
K are both positive (negative) and will be of opposite sign if K   .   and 

m2 
d   H 

K    ,  are.   Similarly,  since for the scattered rays  v      > 0,    ^    and 
m2 d s 

a2« 
—   will both be positive (negative) if Knl   and Kn2  are both positive 

•t1 

(negative) and will be of opposite sign if K    .   and  Km2  are. 

Case I:       K    ., K    ,. K  , , K      positive 
  ml       mZ       nl        nc. 
For   |ai < 1,   i.e.,  for real angles cp,   all the coefficients in (C-10) are 

positive so that (C-10) will have no positive roots. 

Case II:      K    .,  K    -.  K     ,  K      negative 
  ml        m2        nl        nc 
Again,  for    |a| < 1   the coefficients in (C-10) are positive and hence 

(C-10) will have no positive roots. 
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Table C-l 

The Number of Tangencies to an Actual Caustic of a Point 

Source Ray Scattered by a Planar Interface and the Value 

of  6 Along the Scattered Portion of the Ray 
mn 

Signs of K 
!               rnl 

i       and K    , 
mZ 

'     Signs of K   . 
nl 

and K  , 
nZ 

Number of 
Tangencies 

to 
Caustic 

Value of  5        (L    _ 
mn       mZ 

assumed to be greater 
than  L    ) 

m 

both positive both positive 0 Z 

1   both negative both negative 0 -z 

both positive 
(negative) 

both negative 
(positive) Z 

ZsgnK   .,     0<L    <L    . B      nl         -    m      ml 
0.     L      <L   <L    _ 

ml       m      mZ 
ZsgnK   ,,    L    > L    . 

ml         m        mZ 

|   both positive 
or 

negative 

one positive 
and 

one negative 
1 

0.    0<1      <L    _ 
—    m       mZ 

ZsgnK   ,.    L    >L    . 0     ml          m       mZ                ! 

one positive 
and 

one negative 

both positive 
or 

negative 
1 

ZsgnK   .,     0< L    <L    _         i 
0      nl          —    m       mZ 

0.     L    >L    . m      mZ 

one positive 
and 

one negative 

one positive 
and 

one negative 

solve 
(C-10) for 
roots 

Use (11-14) 
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Case III:    K    , ,  K    _ positive (negative) and K   , ,  K  _ negative (positive) 
         ml        m2 nl       n2      0 

2 
The coefficient of  L      in (C-10) and the constant term are positive but the 

m 
coefficient of L      is negative so that both roots of (C-10) are positive, 

m 
Case IV:   K    ,  and K    „ of the same sign and K   ,  and K  _ of opposite sign 
         ml m2 0 nl n2 

2 
In this case the coefficient of L      in (C-10) is positive while the constant 

m 
term is negative and hence there will be one positive and one negative root 

of (C-10) independent of the sign of the coefficient of L    . 

Case V:      K       and K   _ of opposite sign and K     and K _ of the same sign 1 ml mZ nl nt 
2 

Now the coefficient of  L     is negative while the constant term in (C-10) 
m 

is positive and hence (C-10) will have one positive and one negative root. 

The value of 6 along the rays scattered from a planar interface 

is displayed in Table C-l for all but the last combination of signs of the 
th th 

principal curvatures of the  m      and  n      branches of the dispersion sur- 

faces under the assumption that the roots of (C-10) are ordered such that 

L    , < L    -.    The evaluation of 6        is based on the following properties: 
ml        m2 mn B r    r 

a)   it can change value only at the tangencies to a caustic;  b)   it can take 

on only the values   +2  or  0;   c)   for  L.   - m,    b        - sgnK    ,  + sgnK    , ; 
— m mn ml m2 

for L     = 0,    6        = sgnK  . + sgnK _.    These properties have been dis- 
m mn nl nZ 

cussed in Section C of Chapter II and are easily seen to lead to Table C-l. 

When K    ,   and  K    _,   as well as   K   ,   and  K  _   are of opposite 
ml mZ nl nZ 

sign,    6        = 0   if the scattered ray is never tangent t,o an actual caustic 
mn 

surface, i.e.,  when  L    ,   and L    _  are negative real or complex.    If 
ml m2 r 

the scattered ray is tangent to a caustic,  it will have two points of tan- 

gency and   6        =0  between the interface and the first point of tangency 

as well as beyond the second point of tangency.    Between the two points of 

tangency,   6 is either  +2 or  -2 and is most easily determined from 
mn 

(II-H). 

3)    Determination of the Change in  6 When the Normal to the 
Caustic Is Known 

It will now be shown that the change in  6       .as the ray tangency to 
mn 

a caustic is crossed,  is   2sgnC      where  C      is the curvature at the point 
mm r 

k_       of the curved formed by the intersection of the   m      branch of the 
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dispersion surface and the plane parallel to  v       and to the normal n to 
— m - 

the caustic surface at the point of tangency.    The point   k        in  k   space 
— m        — 

is determined by tht- wave numbers   {',T],i<    )  of the scattered ray.    The 
m 

virtue of this formulation for the change in 6 is that it depends only B mn K 7 

on the caustic surface and the dispersion surface of the scattered ray and 

is valid irrespective of how the caustic is produced,   e.g. ,  this formula- 

tion holds for the rays scattered at a curved interface,  as is discussed in 

Section D of Chapter I.T. 

At the point of tangency of the scattered ray to the caustic either 

P      or P      is zero.    For definitcness,  assume that P       = 0  at the tan- 
uu vv vv 

gency point in question.    The change in  sgnP       across the tangency 

point,  as one proceeds in the direction of \        along the ray,  is simply 

dP "m ^ 
VV fr 

equal to  2sgn(v_^ —J!!-) evaluated at the tangency point.       Thus the 
mz     dz 

I v 

mz dz     w 

change  ^6 in the value of 6        across the tangency point   is 
mn mn 

mn L 
(z   )    where  z.   is the value of z  at the tan- 

gency poin^.    Since the (',11)  coordinate system is arbitrary, let it be 

such that the (u,v) coordinate system coincides with it for  z = z. .    Note 

that the  (u,v) coordinate system will vary along the ray if the coordinate 

systems in which the mixed second-partial derivatives of K       and H 
m n 

vanish are different.    Using the fact that  P       is eigenvalue of the sym- 6 vv 6 7 

metric matrix whose elements are  F, , ,  P,,   and  P.-,   it is easily 
11 22 

a2« 
established that -- P     (z. ) 

dz     vv    1 
m 

>tf 
so that 

12" 

ä2 

A 6 =  2sgn (v 
mn mz 

m 

^rf 
(C-16) 

The curvature   C-       of the plane curve formed by the intersection of the 
th 

in 

the   m       branch of the dispersion surface with the constant  f   plane 

It is assumed that  dP     /dz ^ 0   since otherwise the tangency point would 
u        * vv 
be a focus. 
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passing through the point k        can be put into the form 

.2 
3  , ,       2 2,3/2 

C-       =  -v    J / (v    t' + v   '')""' {C-17) 
^m ,2     mz my       mz 

when the sense of the normal to the plane curve is assumed to be that of 

the projection of v        into the constant  '   plane and the usual definition of 
— m 

the sign of the curvature holds.    Thus,  from (C-16) and (C-17) it is seen 

that 

A6 =2 sgn C,      . (C-18) 
mn sm 

In order to show that  sgn C-      = sgnC    ,   with  C      as previously 
sni m m 

defined,  it is first shown that the normal  n to the caustic at the tangency 

point has no component along x   .    The stationary point condition 

P.  = P    = 0  and the caustic condition P      P      - P.     = 0  may be vie ^ed as 

giving points on the caustic surface in parametric form, where the wave 

numbers  ?   and T^  are the parameters.    Using this parametric representa- 

tion of the caustic, it is possible to show that the normal n is in the 

direction 

/«      ^z      ^      dz ,„      ^«      ^      ^z. 
io, (P22 * " P12 W + ^o (P11 ^ " P12 äf, 

f« nti  öz . T-. m oz     _     /    m  oz  ,       m oz\ 1 /^   in» +ioLpiiTr^'p22^r^-pi2(Tr^ + ^r^)J      (c"19) 

2 
with Z(?,TI) as found from the caustic conditions  P    P      - P      = 0.    At 

z = z.,   the  (?,TI) and (u,v) coordinates coincide so that P__   = P       =0 
1 22 vv 

and P.. = P      =0  and from (C-19) it is seen that the x     component of 
12        uv — o ^ 

n is zero.    Thus,   n is parallel to the constant §  plane passing through 

the point k      ,   and hence a line parallel to  n and passing through the 

point k.       lies in this plane.    This line  also lies in the plane normal to — m 
v      xn and passing through k.       and is therefore the intersection of the 

constant §  plane and the plane normal to  v      xn.    Furthermore,   since  n 
-'in    — — 

is perpendicular to v       (n is normal to the caustic and v       is tangent to 
— m   — —m 

it), the line of intersection of the two planes is tangent to the m      branch 
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of the dispersion surface.   Because of this   C-       = cos V C      where   I   is 
Sm m 

the angle between   ( and its projection into the constant  {   plane. 

Since   \ < 90   ,   sgnC-       = sgnC      and hence (C-18) can be written 
I m m 

' b =2 sgn C 
in n rr. 

(C-20) 

While (C-20) is difficult to apply in general,   it is quite easily used 

when the principal curvatures of the  m       branch of the dispersion sur- 

faces have the same sign.    In this case,  the sign of  C       is simply that 

of the principal curvatures,   e.g. ,  in Isotropie media   C      is negative. 
m 
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Appendix   D 

DIVERGENCE COEFFICIENT FOR POINT-SOURCE RAYS 

SCATTERED AT A CURVED INTERFACE 

In this appendix the flux tube divergence factor for rays scattered 

from a gently curved interface between two lossless,  anisotropic media 

is derived.    The method used here requires a knowledge of the point of 

intersection of the scattered rays with a constant  z  plane in terms of the 

incident ray wave numbers.    The divergence factor is then expressed in 

terms of the Jacobian of this transformation.    It has been verified that 

the result derived here reduces properly:    a)  when the interface is 
(43,44) planar;   b)  when the media are Isotropie; c)  for the transmitted 

rays when the two media are identical. 

The steps used in calculating the divergence factor are first out- 

lined and then the complete algebraic steps necessary for this calcula- 

tion are given.    For convenience and clarity,  quantities related to the 

incident rays and quantities related to the scattered rays are indicated 

by the superscripts   i  and  s,   respectively,   rather than the subscripts   n 

ard m  used elsewhere. 

1)     Outline of Procedure 

Step   1 :    Assume that a ray from the source is incident on the 

interface   z =f(x,y)  at the point  [x   ,y   ,f(x   ,y   )]  -- see Fig.   D-1 .    This 

ray is defined by its wave numbers [?   , TI , H  ,{§  , TI )]   where  H {§  .T] ) is 

one of the real solutions of the dispersion relation (1-24).    Since the ray 

travels in the direction of the normal  <     to the dispersion surface,  the 

x  and y  coordinates of the point of incidence are given by the solution of 

o 
x + [f(x0

Iy
0).z']H1

i(?i(r1
i) = y

0
+[f(x0,y0).z-]H2

i(?i.T1
i) - 1       (D-l) 

where the   1   and 2  subscripts refer to the partial derivatives of   K {^,T\). 

Step   2:     Knowing the normal  n     to the interface at the point 

of incidence,  the scattered ray wave numbers can be found from Snell's 



i!:5 

^»(x.y.z) 

Fig.   D-l     Ray scattering by a curved interface 
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S 1 
law  n   x(k    - k ) = 0.    If the scattered ray wive numbers are 

— o    —       — 
r - s      s      s     s      s 
L?   , T)   ,K  (?   , T)   )J   then Snell's law can be expanded to 

S^S        S. 1,.!       1,|      OX 
* {?  .Ti ) - H(; .n )j — 

OZ 

s      _l       '   s.^s   _s. i,^i  -i.l   oy 
T)      -  Tl     = ift (s »T) I • n (? .r] )j-^- 

oz 

(D-2) 

s s i 
which can be solved for  r      and  f|     as functions of r    and r| . 

s s 
Step   3:     The normal  >      to the  N     branch of the dispersion 

s     s 
surface at the point [?   ,r\  ,*.  ({   ,f|   )]   is from (11-16) 

f 8 r 8... 8       8. S^S        S. 1 / lr   S,. S        S.^^^S.-S        S.!2       , 
1 =llZ.0*l^   »1  >+IoK2^  'r|   ^-o./Vl(:   ,T1  U +iH2i:   «^  )J  + 1 

(D-3) 
s    s     s s    s     s 

with the partial derivatives  «.({   , T]   ) and K  (5   , il  ) evaluated at 

(?   ,TI   ).    Since the vector  L    =x    (x-x) + ^(y-y)+z   [z-f(x   , y  ) J 

from the point of incidence to an observation point along the scattered 
s 

ray must be parallel to  v   ,   the coordinates of the observation point must 

satisfy 

/ 0.   ,  T n    0        O.    1    8,-8        8.       . O.      r ,.     O        O.^S^.S        S,      „ 
(x-x   ) + ^2-f(x   .y )JH1(§  .11   ) = (y-y   ) + [_z-f(x   ,y   )JH2(:   . TI   )-0 . 

(D-4) 

Step 4:     For fixed  z,   (D-4) may be solved for  x and y,  which 

are seen to ultimately be functions of '    and f] .    Considering the pencil 

of inciaent rays whose  §    and  |f|    wave numbers lie in some elemental 

region having area  d?   dr| ,   the corresponding scattered rays will pass 

through a small region in the constant  z plane whose area is 

d?1 dri1J(x,y;§1,Ti1) where JfofiS .n) ^x   ^y       ^x   ^y 
•..i i  i     i   i v-i 

is the 

Jacobian of the transformation.    Note that the Jacobian is a function of 

z  and hence of the distance   L    =  | L    |  along the scattered ray pencil. 

The ray divergence factor is defined in (11-30) where  da(L    )  is the 
m 
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normal corss-sectional area of the scattered ray flux tube.    Alternatively, 

S 1       s / s s 
D   (L  ) = vda (L  ) / da (0)   where  da (L  ) is the cross-sectional area of 

z z z . 
si     s 

the ray tube in a constant  z  plane.    Thus   D    (L   )  will be the square root 

of the ratio of J(x,y;S , T] ) at  L    to  J(x,y;§  , T] ) at  1/ Since the 

ray structure is independent of the choice of the (x,y,z) coordinate system, 
si     s 

so is the value of D   (L  ). 

2)      Details of the Calculation 

The details of the calculation for the partial derivatives   ix/$Z    , 

$x/dr]   ,   by/d-     and  dy/dt]    appearing in the Jacobian will now be consid- 

ered.    Because of the length of the expressions involved,  only  ^x/^?     is 

calculated.    The remaining derivatives are listed in (D-l 5),(D-16) and 

(D-17). 

Solving (D-4) for x gives 

x = x0-[z •f(x0.y0)]K^{la.r]
a) (D-5) 

from which one obtains for constant z 

äx      äx      r.     ig   . M      äy -] s.-s    s.    r      ..   o    o,1  3       s.,8    s. 
rT = 3+Lfx03+fy0ri>i(? ^ >-Lz-f(x'y ÜT^^i^ ^ ) 

where 

H H K 

s / -3   s» »- (^   ,r\   } 
K 1 

s s 
S ,_8       S,  d§ 8 ,_8       •. 9f| 

11 a?1     12 a?1 

(D-6) 

(D-7) 

and f o = 3f/äx  evaluated at (x  ,y   ) and similarly for  f o.    Taking the 
_ i 

partial derivatives of the equations (D-2) with respect to  j     yields 
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^-8 v_8 8 .      .      .  ,  n 

K a? K oz 

, T 8.-8     8.      i..i    i.",    \     (   ox\ 

3- OZ 

8 ä?s 
1,-1     1, ^■n"        r   8,-8        S.   •€"    ,       8J.S        8.   If) 

•I il ■? 
a 
oz 

(D-8) 

r s.-s    s,      i._i   i.1   (3     ,'   oyN 

äi oz 

s si 
and this set of equations may be solved for   3"   /d?     and  wt[  /Ö5  •    Since 

n     is given by 

n    = (-x    £o-y    fo + z   ) / V(f o)   + (f o)    +1 
— o —r>    v i-ct   v        —r> v v O   X        *-o   y 

V(f o)2 + (f o)2 + (D-9) 

it is found that 

• riß =. (f 0 0 lis! + f 0 0 ix_0 

_ (4 

o ^»i        , ^  o ,,_i 

JLfjaq = .(f o o^ + f oo^- ) 
a?1 Vnozy      Vx y  a^1     y y a?1  ; 

(D-10) 

Finally,   ax  /a?     and ay   /a?    can Im found from (D-l) and are the solutions of 

the set of equations 

o        _ _     .    .     . ^   o ^   o 
^x f*/  0    0.      '1    i/»!    i«    /r     ^x   , r     Sy \   i    i    i — =.Lf(x   .y   ).z  J^Jf  .^-(f^-^+f O-^-JH^   .^ 
a; 

a?1 

K"    7  K' 

av0N 
|_f(x  .y   )-z  JH12(?  ,H )-Vf

x
0 —+fy0     i ^2(?   '1 ) 

ar    7  K' 

)D-11) 
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The solutions of (D-ll)for   äx  /ä^    and  äy /ä?    can now be substituted 

into (D-10) and these expressions substituted into (D-8).    The solutions 

of (D-8) for  S§   ft{    and >t| /a?    can be used to find r K   ['   ,1\  ) in 
a»1 

(D-6),   which together with   äx  /ä?     and  äy  /ä?    from (D-ll) gives 

Instead of going through the above procedure in an arbitrary 

(x,y,z)  coordinate system,  the calculations are simplified if a particular 

(x.y.z)  system is used.    Choosing the   (x,y,z)  system such that at the 

point of incidence,  the interface is tangent to the   z = 0  plane,   i.e. , 

In this case (D-l 1) f(x   ,y   ) = 0  and  f o = f o = 0,   then  n     - z 
x y —o     —o 

becomes 

3x 
—r ■ z H ,, (: , Ti ) 

a-1 

(D-12) 

u 1 

Since   n       = n       =0,   (D-2)  gives  \     = -' 
ox        oy 0 

of (D-10) the solutions of (D-8/ are 

 7-  =   1-Z   (H     -H   )(f   O    OH +f   O    OH,_) 

s        i 
and ri    = r|    so that with the help 

.-I xx      11       xy      12 

llL   = .z' (H
8
- H1)(f o o H,,

1
 + f o  o 

>-i 
) (f   O   O  H,   '  +  f   O    OH.,) 

xy       11       yy       12 

(D-13) 

s      i i     i, 
wh< re   H   >  K  •  H,i   ancl  Hi ?  are evaluated at (?  ,11).    Using (D-13) in 

(D-7)  and with the help of (D-12),  (D-6)  becomes 

^x      ,  /     i s. ,   s     ir    s i i        s.. i   , Ln 
—p - (ZH     - z»*     )+ZZ(H  -H  lN|,|f O  OK     +fooH     )+)-      fooH. . ifoo^.. 
-.-i 11 11 Lll    x  x     11    xy    12       12  xy    11    yy    12   J 

s     i.fs,, i., L       s, 
OOH. -)+*. J 

-* »« ** i. * *    A  A     i*    Ay    1Z       12  xy    11    yy 

(D-14) 

In a similar manner the other derivatives appearing in the Jacobian 

can be evaluated and can be shown to be 
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OX       ,    t      l S. .8        l.f     8.. 1,  , 1,,       8,. 1,   . 1.    I 

-   i 12        12 T_ 11   xx   12    xy   22      12  xy     12    yy    22   J 

10-15) 

—r- = (zK.--«K,-)+2Z(H -K  VK.-(f OOK , + fooH, ,)+H__(f OOH, , + £oo <     ) 
a?i 12        12 T_ 12 xx   11    xy    12      22  xy    11    yy    12  J 

(D-16) 
and 

^y    ,  /    i 8.       /. s     i.r   8., i,, i.       s.f i^ . 1.1 
7i={Z^2-J5,<22>+"(K-KlH12(fx0xOH12+£x0v0,,22)+H22(fx0yOH12+fy0y0^2)J 
br\ 

(D-17) 

With the above expressions for the partial derivatives, the Jacobian can 

be written as 

J(x,y;r,Ti )=   ^(Z'KJJ-ZH1JK«
/

H22-2K2*)-(Z
/
K12-zHj^)   J 

^ 8    ij"    i     i  .     i.2]r a .      i,    8.      Js.       I 
+ "   (K -K,LHllH22-(,t12, jLllfx0x0+2H12fx0y0    ^W-l (D-18) 

/. 8   i r    s     s   .    8.2"|,"   ir       ^^i,        ,      ie      1 
in -H^H«22-^2) i*iifx0x0+2Ki2fxV  ^2fx0y0J 

,2. s    i.2r    i     i  .     i.2-ir    s     s   .    s.2-l| . .f     A 
in -H) ^J^-IH^) j^n^2-i\z) ifx0xofy0y0"(x0yo) 

2 
z z 

.   2 + z z .21 
J 

si i     i 
with K   ,  H    and their derivatives evaluated at  (?  ,r| ).    Symbolizing the 

Jacobian in (D-18) as   J(z) to indicate its   z  dependence,  the divergence 
.si 81 

coefficient  D      for the point-source rays scattered at a curved interface 

18 

D81  = VJ(z) / J(0)    . (D-19) 

The Jacobian (D-18) could be rephrased in terms of the ray- 
s      i S 1 

optical quantities:   a) the principal curvatures of the  H   , K    and f(x,y) 

surfaces;   b) the angles between the directions that define the orientation 

of these surfaces;   c) the normal distances  z = n     •  L    and 
— o     — 

z   = n    • L ;   d) the normal wave numbers  K    = n     . k    and H   = n    • k 
— o     — —o     — —o    — 

However,  such a representation for  J(z) is probably not the most 
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convenient form for calculating it and therefore is not given here.    Note 

that th<* first term in (D-18) is the Hessian for the rays scattered by a 

planar interface,  tin   other terms being corrections due to the curvature 

of the interface,    from (D-18) it is seen that the divergence factor is 

quadratic in   z,   indicating that the rays scattered from a curved inter- 

face may be at most twice tangent to a caustic. 
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Appendix E 

RAY-OPTICAL REPREbENTATION FOR THE LATERAL RAY FIELDS 

The ray-optical interpretation of the critical point condition given 

in Section E-2 of Chapter II permits the re-expression of the various quan- 

tities appearing in (11-37) in ray-optical terms that are invariant under a 

rotation of the (x, y) plane.    At the critical point,  the phase function P( ? , T| ) 

of the integrands of (II-4) can be written as 

P(%   »tl   ) = f'  X' + TI y'-K  z'l+r?  (X'^XM+TI (y'^y^l+P  (x-x")+ri (y-y")+«    z 1 
ccLc c nJLc cJLc C mj 

=  NL+N,  L.+N     L 
n     n        t    t        n     m 

(E-l) 

where N   , N.and N     are the ray-refractive indices given in (11-17) of the 
n      ■c m 

us branches of the dispersion surfaces at the critical point and vano 

L    • |L   I ,   L    = |L, I  and L     = |L    | . n      ' -n I      ' —t' m        —m' 

2     2 2 
It will now be shown that the quantities P   (d  P/d^   ),   hg/^Ti|/jP   | 

9 "7 Irr I 

sgn(d  P/d?   ) and expj -j(—sgn P   - arg   /ag/ari ) 1  appearing in (11-37) can 

also be expressed in ray-optical terms.    From the condition v     x L 
■ ri'i      — 

v    xL     =0 and the form of P(5. n).  it is easily shown that 
— n    —n 

m 

Lt*B*"-*,-Pl{K'\)'     ^y^'-^^W    • (E-2) 

2 ? 
Expanding d  PT^ , 11   /(?) 1 / d?    and using (E-2) one finds 

P?^4 = L.     P.^IL.    L,    P^ + Lf   P_, + L.3    S-        (E-3) 
2    ,2 ly     11 tx    ty    12 tx    22 fy 2 

at the critical point.    Since v    is normal to the curve g. (', T]) - 0, it can be 

written as v     = Q    (xo S.^ZQ 8/2* where Qi ~ ±1//gl  + g2 '  the sign bein8 

chosen such that this expression for v    has the proper sense.    Also, 

Ijjfi 'lut?) 1 ■  0 so that all its derivatives with respect to { are zero. 

Using the above form for V. and the first two derivatives of g     ' , Tl h(')   . 
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A 
d' 

'y 

(hn\y-Zhl2VUVty+ hU^ (E-4) 

Finally,  at the critical point, V       - L    /L     so that substituting (E-4) into 

{E-3) gives 

■ (z   xL,)- D, ■ (z    x L,) —o     —A      ~ 'm n     —o      —f 
(E-5) 

«c'"«» 

where D. is the symmetric dyadic having elements (P. . + L. Q, g. . .) 
~^mn 2     2 2 1 •' t    *   *»J 

with i,  j = 1, 2.    Hence P   (d   P/d'   ) at the critical point is independent of 
2 2 

the choice of the (x, y) cue iinate system.    Since P    > 0,  at the critical 

point 

8gn(d   P/d?   ) = sgn[P2(d  P/d?   )] = sgn[(£0
x L

f )' 5fmn- (^''t;)] 

{E-6) 

and is also independent of the (x, y) coordinates.    Furthernnore,   using (E-2) 

and the foregoing expressions for v    ,  at the critical point 

|Äft/>nl 8 U 
P-, 

1 

hW 
{E-7) 

which is independent of the (x, y) coordinates. 

The remaining quantity to be considered is 

exp| - j (— sgn P   -arg Mg   /^il)    .    As was argued in Section E-2 of Chapter 

II,   sen L.    ■ sgn V.     so that from (E-4),   sgn PJ?   , 'H   ) = ''gn va    .    Also, 
ty ly 2   c     c ^y 

in Section E-l of Chapter II,  arg  Mg (?, Tl   )/^r|   was defined to be 
arg,/g, Cfi T

1K 
+
 ^-'  

w^ere A is a small positive quantity -- see text after 

(11-35).    Thus,  at the critical point 
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^ sgnP2-*rgJ^J^=^sgnv^- argJ^(rWp~) . (E-8) 

  

Using (E-8), the invariance of expj-j(— sgn P    -arg Ag  /är])      will be 

shown by considering the sign of v       and the shape,   near the critical point, 

of the trace of the K    and K     branches of the dispersion surface in a con- 
l P 

stant { ■ {    plane passing through the critical point.    The four possible com- 

binations of the sign of V       and shape of the foregoing curves are depicted 

in Table E-l.    The arrows in Table E-l indicate the direction of the projec- 

tion into the constant ? = ?     plane of v corresponding to a wave carrying 

energy in the plus z direction.    The sign of v      at the critical point is as 
y o ,— 

specified for each case.    Recall that near the branch curve,  H    « g.    * Vg.    "" 

see text before (11-33) -- where arg ^/g, is assumed to be taken such that 

the plus sif.n applies if K    corresponds to an upgoing wave and the minus 

sign applies otherwise.    The value of g     at the critical point is indicated in 

Table E-l.    Furthermore, the values given in Table E-l for arg /g (?   ,T)   fA) 

satisfy the above assumption on arg ^/g" for r].^r\   +A.    Using (E-8),  it is 
v C 

easily verified for each case in Table E-l that at the critical point 

exp[-j(-^ sgn P2- arg^g^/^Ti )] = exp[jj(2-sgn C^)] (E-9) 

where C    is the curvature of the curves in Table E-l.    But sgn C    is inde- 

pendent of the angle between v    and the constant { ■{    plane passing through 

the critical point.    Thus sgn C    , and hence the left-hand side of (E-9),  will 

be independent of the (x, y) coordinate system.    For convenience, let 

s
tm„' -4%' W ■ SUM ■ Ifcx kiO ■ (2■',g,, V • (E■10, 

The terms of the sum indicated in (11-37) have thus been shown to be 

independent of the choice of the (x, y) coordinate system and to be expressible 

in ray-optical form . 
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Appendix F 

A SURFACE ADMITTANCE REPRESENTATION FOR 
PLANE-STRATIFIED CONFIGURATIONS 

In order to define that Z  which represents a plane-stratified,   loss- 

less,  dispersive,  anisotropic medium above a perfectly conducting plane, 

the auxiliary problem,  with boundary conditions (111-26) and (111-27),  was first 

considered.    For most values of the parameters k    and r,  the auxiliary 

problem will have unique non-trivial solutions of the form given in (III-' ) for 

all h     ^ U,    At the remaining values of k    and  v,  which lie on surfaces in 
— d —t 

k   - i' space,  non-unique cavity-type solutions will exist for h     = 0 and no 

solutions satisfying the boundary condition (111-27) will exist for all h    / 0. — d 
The non-unique solutions exist when the plane z-d corresponds to a magne- 

tic field null and would give infinite values for some or all of the components 

of the impedance dyadic Z .    For this reason such values of k    and j   are ex- 

cluded from the consideration of Z .    Although the surface impedance 

formalism breaks down at these values of k    and a),  a surface admittance 

formalism will in general remain valid. 

The surface admittance Y is the inverse of  Z ,  when both Z and its 

inverse exist,  and is regular at those values of k    and i; for which Z   can- 

not be defined.    In studying the properties of Y ,  one would consider the 

fields in the region 0 < z < d with E   ,  rather than H   ,   specified at z =d. 

Thus to find the admittance,  one requires that Y be such as to satisfy the 

relation 

z = d z = d 

for two field solutions in the region 0 < z < d.    The two field solutions to be 

used are those satisfying the boundary condition 

j('JUt - k. • £ ) 
(Et) =ede (F-2) 

z-d 

at z = d with e, taking on two linearly independent forms.    If (F-l) is satisfied 
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for these two field solutions,   because of linearity,  it will be satisfied by 

the solutions for all possible e ,.    Those values of k    and ■ for which non- 
— d —t 

trivial solutions exist when e , = 0 are excluded from consideration.    The 
— d 

impedance formalism may,  however,  be used,  in general,  at such values. 

The energy and power relations containing Y   can be derived from 

reasoning similar to that used for Z .    They are 

and 

>Y 

2[it "ST-It]      =sdx 
z = d 

.1 r * 
BY 

ik * flT • It] = s 
dy 

z = d 

(F-3) 

5Y 
IT   * m n 
2L-t       9uu       -cj Wd   ' 

z = d 

(F-4) 
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Appendix G 

GROUP VELOCITY AND POWER FLOW RELATIONS FOR 

SURFACE WAVES IN PERIODIC CONFIGURATIONS 

In this appendix the power flow and energy relations derived in 

Chapter III lor plane-stratified media are generalized       lossless struc- 

tures that are stratified in one direction and periodic in planes transverse 

to the direction of stratification.    The fundamental translation vectors 

describing the periodicity of the structure in the planes perpendicular to 

th? direction of stratification are assumed to be the same for all planes. 

In tneir most general form,  the structures treated here consist of a 

periodic array of identical perfectly conducting scatterers imbedded in a 

periodic,  lossless,  dispersive,  anisotropic medium which may be bounded 

by a perfect conductor of periodic shape.    Moreover,  the fundamental 

translation vectors need not be orthogonal. 

It is first shown for surface waves propagating in such structures 

that the group velocity is equal to the velocity of energy transport -- see 

Section 1.    For the periodic structures considered here,  the velocity of 

energy transport is the ratio of the integral over the coordinate of strati- 

fication of the period average of the real part of the complex Poynting 

vector to the integral of the period average of the stored energy density. 

A proof of this relation for surface waves propagating on a periodic, 

anisotropically conducting surface has previoxisly been given by 

Gans. Also,  Kay has shown that the group velocity is in the 

direction of energy flow for the specific case of surface waves in 

air above a finned conducting surface.    However,   the problem con- 

sidered by Kay is highly restricted in that no power flows between 

the fins to within the approximations used in the derivation. 

The relations between power flow and stored energy in a periodic 

structure and the dyadic surface impedance representing the structure, 

when such a representation it possible,  are derived in Section 2.    These 

relations are similar to (111-36) and (111-37).    It is possible to represent a 
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periodic structure by a dyadic surface impedance when the media above the 

structure is uniform in the planes parallel to the planes of stratification of 

the structure and when the transverse wave numbers and frequency are such 

that at the plane on which the surface impedance is defined, the fields can 

be approximated by the fundamental space harmonic. 

1)   Group Velocity and Energy Velocity 

The most general form of the configurations covered by this analysis 

consists of a periodic array of identical perfectly conducting scatterers 

imbedded in a periodic,  anisotropic,  lossless,  dispersive medium which 

may or may not be bounded from below by a perfectly conducting surface 

having periodic shape.    The periodicity in  0 ,  i.e. ,   in the planes of con- 

stant  z,   is assumed to be described by the fundamental translation vectors 

£ and  b.    These vectors,   which need not be orthogonal,  have the property 

that,  when viewed from any point  o + z   z  the configuration looks the same 

as when viewed from the points  p + na + mb + z   z   where  n  and  m  are 

integers.    The vectors   a  and b describe a unit cell which is a cylinder 

parallel to the  z axis,  and extending from  z = - "  to  z = *,   and whose 

cross-section in any constant  z plane is a parallelogram having sides 

formed by a and b -- see Fig.  G-l.    If the configuration is periodic in 

one direction only, the other translation vector may be taken arbitrarily. 

The case of a configuration uniform in £ is also covered here when both 

a and b are taken arbitrarily. 

While the discussion given in this section applies to configurations 

with a periodic array of scatterers and a periodic medium, it is also valid 

when no scatterers are present and when the medium is uniform in D.    The 

discussion is also valid when the medium,  in any of the above cases,  is 

bounded from below by a perfectly conducting surface whose shape may be 

a periodic function of p.    The medium is assumed to be described by the 

Hermitian tensors  |   and y    which,  when the medium is periodic,  are 

periodic functions of c.    They are further assumed to be continuous func- 

tions of position except for finite jumps on a set of zero volume and are 

allowed to be functions of uu.     The only restriction on the   z  dependence of 
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Fig. G-l     Cross-section of a unit cell 
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the configuration is that it he such that surface waves,  of the form 

described in the following paragraph,  be solutions of Maxwell's equations 

The surface wave solutions that are assumed to exist have the 

form 

E(r ; kt. .) 

(G-l) 

H(r ; kt.t) h (^.z; kt>i) 

where  k=x     k+y     k     is a real wave vector and  e  and  h  are periodic 
— t—ox-'-oy — — 

functions of  0   whose periodicity is described by the fundamental transla- 

tion vectors   a  and  b.    This form of the fields is consistent with Floquet's 

theorem for waves in periodic configurations.    The   r  dependence of E 

and H is further assumed to be such that they approach zero as   |z|  -• " 
* 

and  E x H   ,   as well as the electric and magnetic energy densities,  are 

integrable over a unit cell.    Note that the entire foregoing description of 

the fields applies when the configuration includes a perfectly conducting 

bounding surface if the fields below the surface,  which are unrelated to 

those above,  are taken as zero.    Also,   if the configuration is uniform in 

some direction,   e   and  h  are independent of the coordinate along that 

direction. 

In addition to the above-described requirements on the spatial depen- 

dence of E  and  H,   their tangential components must satisfy appropriate 

boundary conditions on the surface of the perfectly conducting scatterers 

and on the bounding surface,  when either of these are present,  and on the 

discontinuity surfaces of £  and y      At the surface of the scatterers and on 

the bounding surface   n x E = 0,   and hence   n x e = 0,   where   n  is the 

normal to the surface.    The vectors   n x E  and   n x H,   and hence   n x e 

and  n x h,   must be continuous across those surfaces at which C   and a 

are discontinuous,   n  being the normal to these surfaces. 

As in the case of a medium uniform in  o.   Maxwell's equations have 

solutions of the form described above only for those values of the 
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parameters   k     and  t   satisfying some relation   D (k   , i) = 0,   which is 
— t s —t 

called the surface wave dispersion relation.    Let  (k   .uu)  be one sei of 

values satisfying the dispersion relation and  (k    + dk   ,   i; + d i )   be a 

neighboring set of values also satisfying the dispersion relation.    Then, 

to first order,  the fields associated with the latter set of values are 

given by 

(G-2) 
E (r ; k    + dk  ,   JU + d t) = E(r ; k     i) + 5|| (r ; k   . i ) 

H (r ; k    + dk,  ji + du;)  = H(r ; k .»J + 5E (r ;kt> i) 

where the variation 6  symbolizes the differential operation 
ft * 

6 = dk    •  V.     + dij-r— .    Since   E x H   ,   for both sets of values of wave 
-t kt u M 

vector and frequency,  is integrable over a unit cell,   E    x 6H     and 

oE x H     are also integrable over a unit cell.    Similarly,  because of tho 

boundary conditions   E  and  H  are required to satisfy,   it is seen that 

n x 6E  is zero on the surface of the scatterers and on the bounding sur- 

face,  when these are present.    Furthermore,  n x 6E  and  n x ^H  must 

be continuous functions across the discontinuity surfaces of £ and b:.   Finally ^E 

and 6H  satisfy the differential equations (III-6). 

Consider now the quantity V . (JE    x 6H + 6E x H   ).    In Chapter III, 

by expanding the divergence of the cross-products and using (III-2), 

(III-6)  and the Hermitian properties of £  and ^,   this quantity was shown 

to be equal to  -j Jwdiu  at points within a lossless medium,   where 

1    *    äjue 1     ♦     üiy 
w = —E   ' -T^1 •  E + — H    • -r-5' •   H  is the energy density.    At points 

2—       dju       —     2 — öx      — 67 # « 
within and on the scatterers and the bounding surface, E x^H + ^E+H 

and the stored energy density w are both zero. Hence, for all points, 

the relation 

(G-3) V •  (E    x 6H + 6E x H   ) = -j2wdx 

holds.    From the form of  E  and  H  in (G-l),   w  is seen to be a periodic 

function of n  . 

Alternatively,  using the form of E  and H  in (G-l),   6E and OH 

may first be expanded as 

I 
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6E   =  ('e - j dkt ._oe) e 

iH  = (6h-J dk    • £k)« 

•JSt-i 

"j ilt ' i. 

(G-4) 

where   öe  and  6h  are periodic in  0,    From the above equations,  it is 

recognized that   Je  must satisfy the boundary condition   n x ie =0  on the 

scatterers and on the bounding surface.    Also,   n x &e  and  n x th  must 

be continuous across the discontinuity surfaces of I   and     .    With the 

above forms for   JE and 6H,   {G-3)  becomes 

r     * • -jZwdt   =V'L£   x6h + 6£xh     - 2jd k    * £ £ J (G-5) 

or,   since in a lossless medium the divergence of the real part   s   of the 

complex Poynting vector is zero, 

-jZwdu;   =   -j2dk    • £ +  V • (e    x 6h + 6£ x h   ) . {G-6) 

Note that £ is a periodic function of £ . 

Solving the surface wave dispersion relation for   JU = x(k   ), to first 

order  dx = dk V      JU and (G-6) may be written 
-t 

1 * £ 
dk- (wV     x-£)  = j-r-V» (e    x6h+5exh   ). (G-7) 

In general,   V • (£   x 6h + 6£ x h  ) F 0   so that the group velocity V     i 
-t 

is unequal to the local energy velocity  s/w.    It is for this reason that 

(G-7) is integrated over the volume of a unit cell,  since then the right- 

hand side of the resultant equation,  as argued below,  is zero. 

The volume integral of the right-hand side of (G-7) over the unit 

cell is converted into a surface integral over the surface of the cell 

using the divergence theorem.    The contribution to the surface integral 

from the end faces of the unit cell at   p ■ • •  and  B ■ * It zero since  e, 

h,  6e  and  fth are zero there.    Next,  consider the contribution from the 

two side walls parallel to the vector  a.    On one of these side walls,  the 
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unit normal vector is  n = £    x a/ | a|   while on the other it is 

n = - r    x a/1 a |  -- see Fig. G-l.    Because of the periodicity of e, h, 
-       -o    -    - ( , -   - 
6e and 6h,  the value of £   x 6h + &£ x h    at a point £ + £  r on one side 

wall is equal to its value at the corresponding point c_ + b + r   z on the 

opposite side wall.    Thus,  for each contribution to the surface integral of 

n«(e    x6h + 6exh) from one of the side walls,  there will be a contri- 

bution of equal magnitude but opposite sign from the other,  and hence the 

sunn of the surface integrals over these two side walls is zero.    Similarly, 

the sum of the surface integrals over the two side walls parallel to  b  is 

also zero.    Therefore, the integral of (G-7) over a unit cell reduces to 
OD 30 

dk    • ^k Jf  J dz J J wda = dilt *   J dz     f • da (G-8) 
• f P 

where       da  stands for integration over a constant  z  cross-section of the 
P 

unit cell. 

In order to properly interpret the above equation, some properties 

of the integral of s  must be established.    It will first be shown that for 

any value of z,   j   s  da = 0.    To see this,  consider the surface integral of 

P 

s •  n over the surface enclosing that portion of a unit cell lying below 

some constant z  plane.    Since the mediunn is lossless,   7 •  s = 0  and 

hence, using the divergence theorem, the surface integral is zero.    The 

integral of s • n on the end face at z = - eD  is zero because  s  is zero 

there.    Using the same arguments given previously for the surface inte- 

gral of n • (e    x 6h + 6e x h   ),   the integ. al over the side walls can be 

shown to be zero.    Thus, the surface integral on the top face of the region, 

where  n = z   ,   must be zero.    Since the value of z  on the top f?.ce was 
—    —o 

arbitrary,        s  da = 0 for all  z.    The significance of this result is that 
P 

the triple integration of  s  indicated on the right-hand side of (G-8) 

results in a purely transverse vector.    Because of this and the fact the 

^x and k    can vary independently,   (G-8) implies that 
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V     üU       dz  I . wda  =    |   dz    ]£ da . 
— t -» "n -OD p 

(G-9) 

The triple integral of w  in the foregoing equation is seen to be the 

electromagnetic energy in the unit cell.    The meaning of tlr- integral of 

s   is shown below to represent the average power flow in the surface 

wave times the cross-sectional area of the unit cell.    In demonstrating 

this, the  (u,v)  coordinate system,   in the  (x,y) plane,  is introduced. 

The  u  coordinate is taken in the direction of the translation vector  a 

and v  is taken in the direction of b -- see Fig.  G-l.    This coordinate 

system has the property that for a given value of u,  the quantities  w 

and £ are periodic functions of v with period b =  |b| ,   while for a 

given value of v, they are periodic functions of u  with period  a =  la| . 

Let u     = a/a be the unit vector along u and v     = b/b  be the unit 
— o     — —o     — 

vector along  v.    Also,  let  u    and v.   be a reciprocal set of vectors to 

u     and v     having the properties that u. • v     = v   • u     =0  and — o —o rr _i_0_i_0 

u   •  u     = v. 
—1     — o     —1 

v     ■ 1(    In the  (u,v,z) coordinate system, 8=u   s+v   s+z   s   , 
— o l —  —o  u  —o  v  —o  z 

where   s    =S'U,,    s    =s,v,    and   s    = s • z    . 
u—   —1        v—  —1 z—   —o 

The area element  da can 

be express' d in terms of du and dv as  da = — du dv,      where 

A = ab | u    xv   |   is the area of any constant z  cross-section of a unit 
— o     —o 

cell.    Recalling that  Ms    da = 0 for all z and defining the triple integral 

P 

of s  appearing on the right-hand side of (G-9) as  AS ,   for reasons that 

will become apparent later, it is seen that 

ab* 
-irr 
S = -r     du i dv     (u    s    + v    ■      dz . (G-10) 
—      abJJJ—ou—ov 

o       o     -• 

Note that since  s,   and hence        a^dz,   are periodic functions of v,   their 

integral over a period in  v  is independent of where the start of the period 

F    r is taken.    Similarly, £,   and hence     dv       £dz,   are periodic functions of 
o      -a, 

u   so that their integral over a period in u can be started from any point. 

For convenience, the periods have been taken as starting at  u = 0 and  v = 0 
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in(C-10). 

,       ^    As an aid to the interpretation of ,G-lO), it will be proven that 

dv      s   dz is independent of u.    Consider a region formed from that 
o    -00 

portion of a un     cell lying between the plane u = 0 in the (u, v, z) coordinate 

system and the plane u=a<a--    see Fig.   G-2.    In this region V • s = 0 so 

that the integral of s ■ n over the surface of the region is zero      The in- 

tegrals over the end faces at  |z|   ■•  are zero and the integrals over the 

side walls at v = 0 and v = b cancel because of the periodic dependence of s 

on v.    On the side wall u = a , the normal is given hy ji = u  / | u   | ,  while on 

the side wall at u = 0,  n = ".Ü,/I.Hi I ■    Thus,  the surface integral over the 

infinite cylinder,  whose cross-section is shown in Fig.   G-2,   reduces to 

b      oo b      » 

-IpJdvJX) dz 1        Jdzjis)        dz==0    .       (Mil 

b     ■ 
But a is arbitrary so that jdv \au dz is independent of u.    A similar argu- 

O      .oo r     F ment can be used to prove that        du     svdz is independent of v.    Using 
o   _'„ 

these two facts, ? given in (G-10) is seen to be 

u 
S =-:~ Jdv J sudz +^p-   |,dursvdz   . (G-12) 

O - 00 Q - CD 

It will now be shown that 5 as given in (G-l 2) can be interpreted at 

the average power in the surface wave. Consider the planar surface lying 

between 'ehe two lines u = a   ,  v =8   and u = a   ,  v =8_, which are parallel 
XI, Cm C* 

to the z axis.    In order to calculate the total power P passing through the 

above planar surface,  construct an infinite cylinder of triangular cross- 

section between this plane and the two intersecting planes u =0,    and v = B    -• 

see Fig.  G-3.    The total power P is the surface integral of£-v,  where v^ 

is the unit normal indicated in Fig.  G-3.    Again, the fact that 7.^=0 re- 

quires that P be equal to the power entering the triangular cylinder through 
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Fig. G-3     Cross-ssction of the triangular cylinder 
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u = a    and v = 3    sides of the cylinder. 

Th e unit normal on the u =a    side of the cylinder i» .u,/ ju, I   an^ 

that on the v = 3   side is v / |v   |  so that 

'2 00 Ot j oe 

dz (G-13) p ■ i—r \ dv r<s I      dz +1—r I"du M8 I 
8-oo 2 a   -» 1 

1 L> 

where s    =s-u,ands    =s.v,.    In general,   8.-9, will not correspond to 
u—   —1 v   —   —1 21 

an integral number of periods along v and hence the first integral in (G-13) 

cannot be exactly replaced by 

82'81      b 

■ j   dv [  s   dz , 
b 

O        _oo 

which, as previously proved,  is independent of a   .    However, the absolute 

error introduced by making this replacement is always less than or equal 

to some fixed number which is independent of B - 8   ,  i. e. ,  it is independent 

of the length L in Fig.   3.    The error is due to the deviation of the actual 

power associated with the leftover fraction of a period from that same frac- 

tion of the power associated with a complete period.    Since the absolute 

error i as a fixed upper limit, the relative error decreases as L increases. 

In the s^.me way, the relative error involved in replacing the second integral 

of (G-13) by 
a 

1      2 
a   -a ■ 

du      s   dz    , 

O        .oo 

which is independent of 8   ,   can be made arbitrarily email by selecting L large 

enough.    To within the above-described approximations,   P can be written 

8-8    b      co a   -a      a      ■ 
p^irTbJdvJ8udz+T7TT JduJ8vd- (G-14) 

In order to find 8.- 8   and a   - a     in terms of L and v^  the law of 

sines,  which can be written as 
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(u   XV   )      z    • [u   x(z   xv)]       z    • [v   x(z   xv)] 
—n 

S   - 8 
2      1 

a   -a 
1       2 

(G-15) 

is used.    From (G-l 5) it is found that 

= LV . u 
—   —o 

a   - a 
1      2 

Lv • v 
—   —o 

(G-16) 

With the help of (G-l 2) and (G-16),  P as given in (G-14) can be written a« 

LV -S (G-17) 

Equation (G-17) serves as the basis for interpreting S as the average power 

flow for the surface wave as a whole,  in the sense that the power passing 

through any plane surface infinite in z and lying between two lines parallel 

to the z axis is given approximately by the normal component of S times 

the width of the surface.    Further, the relative error in the approximation 

decreases as the width increases. 

Defining W by the equation 
OD 

^=i WJwdz • (G-18) 

W is seen to represent the average energy in cylinders infinite in t, parallel 

to the z axis and having normal cross-sections of unit area.    Finally,  re- 

calling the definition of S -- see text before (G-10) -- (G-9) can be written 

as 

7     u =|/W       . (G-19) 

Thus    the energy velocity 5/Wof surface waves in periodic configurations 

is equal to the group velocity. 
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2) Surface Impedance Representing a Periodic Configuration 

In many configuration! of the type described in the previous sec- 

tion, the entire region above some plane z si is filled with a medium which 

is uniform in o rather than periodic.    In such cases, it is sometimes possible 

to represent the effect of the structure below a plane z = d > 1 on the propa- 

gation of fields having the form (G-l) in the region z > d by a dyadic surface 

impedance defined at z=d.    This impedance representation is possible in 

those ranges of values of k    and uu for which the higher space harmonics 

that go to make up e and h in (G-l) will have decayed sufficiently so that e 

and h can be approximated at z = d by the zero-order space-harmonic fields, 

which are independent of p.    Note that in this discussion k   and ■ are inde- 

pendent variables,  i.e. , they are not required to satisfy a surface wave dis- 

persion relation. 

As in the case of a plane-stratified medium above a perfectly con- 

ducting plane,  which was discussed in Section O of Chapter III, two linearly 

independent solutions of the form given in (G-l) in the region z < d are 

needed to uniquely define the dyadic surface impedance Z through the re- 

lation 

(e   )       = Z • (z    xh   ) . (G-20) 
—t      ,     -     —o    —t       , 

z=d z=d 

In writing (G-20), is assumed to be sufficiently large so that £   and h    are 

indeed independent of p^.    Moreover,  it is assumed that none of the linearly 

independent solutions in the region z<d has a magnetic field null of the 

fundamental space harmonic at z = d,  since otherwise Z  could not be uniquely 

defined.    However,  when such a null exists at z = d,  it is in general possible 

to formulate a dyadic surface admittance representation for the structure 

in a manner similar to that given in Appendix F for the case of plane- 

stratified configurations.    Relation (G-20) can now be used as a boundary 

condition at z = d when solving for the fields in the region z > d and ensures 

that the transverse fields for z> d will connect continuously to valid solu- 

tions in the region z<d -- see Section D of Chapter III. 
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When the structure below the plane z = d is such that Z is anti- 

Hermitian,  it will be shown that the power flow and stored energy below 

the plane z = d can be computed from relations analogous to those of 

(111-36) and (III-',7).    The dyadic surface impedance will be anti-Hermitian, 

if, as will be assumed, the region in which the waves exist is bounded 

from below by a perfectly conducting, possibly periodic,  surface.    Note 

that the presence of the bounding conductor is sufficient to ensure that Z 

is anti-Hermitian but is not a necessary condition.    The presence of the 

bounding conductor ensures that the average power in the z direction is 

zero,  i.e.,  that    Is    da = 0,  as can be seen from the proof given in the 

P 
previous section.    At z = d,  e    and h    are independent of p so that s    is 

— t —t — z 
independent of p and must therefore be identically zero.    This last fact 

implies that Z will be anti-Hermitian. 

As in the previous section,  the fields at neighboring sets of values 

(k   , tu) and (k. ^dJc   , ■ +du)),  where dk   and da' are now independent,  are 

considered.    Requiring the derivatives of E and H with respect to k   ,  k 
— — x      y 

and | to exist, the fields at (k   +dk, yu + duj) are again given to first orde-1 

by (G-2).    Expansion of the quantity  V . (E*x 6H+fiExH*) leads,  as before 

to (G-6),  which may be written as 

wduj -dk  • s = ji-V. (e*x fih+eexh*)   . (G-21) 

Equation (G-21) is now integrated over the volume of the region composed 

of that portion of a unit cell lying below the plane z = d.    Taking the fields 

below the perfectly conducting surface,  which are unrelated to those above, 

to be zero, the z integration may be taken from z = -<ie to z = d.    The volume 

integral of the right-hand side of (G-21) is converted to a surface integral 

using the divergence theorem.    As previously argued,  the net contribution 

from the integrals over the side walls is zero because of the periodic nature 

of e,  h, 6 e and 6 h.    Since the fields are zero at z = -o0 ,  the contribution 

from the end face at z = -00 is zero,  and hence the integration over the 
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entire surface reduces to the integral over the end fat.: at z = d of the 

quantity z    • (e  xfih+6exh   )     ,.    But,   by assumption,  this quantity is — o     — _       _   _    z=cj 

independent of £ for z = d,  and hence its integral is equal to the product 
* ••- 

of the area A of the end face and the quantity z    «(exfih+^exh) 
— o     — _      —   —    z-d 

If the operation 6 is applied to (G-20) and the resultant equation 

for (6e J      . is used together with (G-20) itself and with (111-17) and the 
— t z=d 

anti-Hermitian property of Z ,  it is seen that 

z    • (e  x6h+6exh*)        = -Rz   xh*).6Z.(z   x h )! . (G-22) — o     —        —      —   _   z=(i       L ~o   —t ~    —o   —t J      , 
z=d 

Thus the integration of (G-21) over the region described above leads to 

the relation 

-j^Rz   xh*).fiZ-(z   xh)]        =W,da)-dk   -S,    , (G-23) c[_—o   —t ~     —o   —tj       ,       a —t   —a 
z=d 

where 
d 

wd = i:ldzjTwda (G-24) 

-oo p 

and the transverse vector 5 . is given by 

d 

^d-xldzhda • (G-25) 

that 

Because dk  ,  dk    and duu are independent variations, (G-23) implies 

ji[(£0*>!*)• dr 5-^V]    •• ,        dx z=d 

j^fiz   xh*).r|-Z.(*   xhjl ■ f. 2 L —o   —t       3k    ~     -o   —t J        ,       dy 
y z=d 7 

(G-26) 

and that 
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•'K'W-KS-too»*.»] = w. (G-27) 

z = d 

From the definition of W,,  the term on the left-hand side of (G-27) is 
d 

seen to represent the average electromagnetic energy stored in cylinders 

parallel to the z axis,  extending from z = -ootoz = d and having cross- 

sections of unit area.    The interpretation of S   ,  and hence the terms on 

the left-hand side of (G-26),  as the average power flow below the plane 

z = d is similar to that given in the previous section for surface waves in 

periodic configurations.    That is, the power passing through any plane sur- 

face extending from z = -00 to z = d,  and lying between two lines parallel to 

the z axis,  is approximately given by the normal component of ^. times the 

width of the surface,  where the relative error in the approximation de- 

creases as the width increases.    Proof of the validity of this interpretation 

of S . follows exactly that given in the previous section for S ,  with the end 
— d — 

face at z =00 renlaced by the end face at z = d.    The replacement of the end 

face at z = «o by that at z = d is possible since the only property of the end 

face at z = » that was used in the discussion of 3? was that s   =0 there; in — z 
the present problem s    = 0 at z = d. z 

Thus,  for structures that are periodic in two dimensions and that 

can be represented at some plane z = d by an anti-Hermitian dvadic surface 

impedance Z ,  the average power flow S , and average stored energy W. in ■ —d d 

th e structure can be found knowing only Z  and (h   ) . ■ —t   zrd 
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Appendix H 

ON THE POSSIBLE EXISTENCE OF H-TYPE SURFACE WAVES 
ON A UNIAXIAL PLASMA SLAB 

The purpose of this appendix is to investigate the possible con- 

tribution to a surface wave field from the plane wave fields in the plasma 
Fl       2 

that are associated with the solutions  H = ± vk    - k    of the plasma wave 
o     —t r 

dispersion relation.    The vector character of these plasma waves is that 

of H-type modes and has the form 

c'   =  C[x   H - z    k " 
-0        -0   X ' (H-l) 

h'   = -2- L-x   k  k   +Y  (k2 - k2) - z   nk ] 
— JUU —o   y   x     •*-o    o        y      —o     y 

with  C an arbitrary constant.    The vector character of those plane waves 

in the air regions that have the H-type mode form,  and will thus allow a 

simple application of the continuity conditions at  z = ^d,   is 

e'   =  D[x    K   - z    k ] 
—a — o   a     —ox 

h'   = — [-x   k   k   + y   (k2 - k2) - z   K   k  ] 
—a       uun —oyx-*-oo        y      —oay 

o ' 

(H-2) 

with K    = ± ja  and a  as defined in Eq.  (IV-11).    Note that  H = ^ja  also. 
ä 

In Region 1,   K    must be taken as   -ja to ensure that  E and H  are 

zero at z = ".    Similarly, in Region 3,   K    must be taken as ja.    Denot- 

ing the amplitudes in Regions   1  and 3 as  D.   and D ,   respectively, and 

letting C.   and C_  be the amplitudes of the plasma plane waves corre- 

sponding to  H = -ja and K = ja,   respectively, the continuity conditions 

at z = d result in the equations 

„    -ad       _      -ad . _     ad 
-DjC        = -C. e        + C2 e 

_    -ad       _     -ad , _     ad 
le       ■   C| •       + C2 e 

(H-3) 

when the fields in Region 2 are assumed to be the sum of the two H-type 

plane waves.    The continuity conditions at  z = - d  can be written as 
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_     -ad        _     ad  ,   ^     -ad 
D3e =  -Cje       ♦  C2e 

_     -ad        _    ad  ,   _     -ad 
V =     Cje      +  C2e 

(H-4) 

These equations have only the trivial solutions   C.   = C    = D.   = D    = 0 

and hence no surface wave can exist whose fields in the plasma are a 

sum of the two H-type plasma plane waves,  which propagate as  H = ± ja. 

The physical reason why no surface wave exists that contains the 

above-mentioned plane waves is that the waves of this polarization do not 

"see" the plasma,  since the infinite D. C. magnetic field along y prevents 

the electrons from moving in response to an R.F.  electric field that,  as 

in this case,  is purely transverse to y.    In effect,  for waves of this 

polarization,  no slab on which to have surface waves is present. 
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